Tag Archives: Analytical Modeline

Technical Discussion of ATS Telecom PCB solution

Last year, Advanced Thermal Solutions, Inc. (ATS) was brought in to assist a customer with finding a thermal solution for a PCB that was included in a data center rack being used in the telecommunications industry. The engineers needed to keep in consideration that the board’s two power-dissipating components were on opposite ends and the airflow across the board could be from either side.

Telecom PCB

The PCB layout that ATS engineer Vineet Barot was asked to design a thermal solution for included two components on opposite ends and airflow that could be coming from either direction. (Advanced Thermal Solutions, Inc.)

The original solution had been to use heat sinks embedded with heat pipes, but the client was looking for a more cost-effective and a more reliable solution. The client approached ATS and Field Application Engineer Vineet Barot examined the problem to find the best answer. Using analytical and CFD modeling, he was able to determine that ATS’ patented maxiFLOW™ heat sinks would provide the solution.

Vineet sat down with Marketing Director John O’Day and Marketing Communications Specialist Josh Perry to discuss the challenges that he faced in this project and the importance of using analytical modeling to back up the results of the CFD (computational fluid dynamics).

JP: Thanks for sitting down with us Vineet. How was the project presented to you by the client?
VB: They had a board that was unique – where it would be inserted into a rack, but it could be inserted in either direction. So, we faced a unique challenge because airflow could be from either side of the board. There were two components on either side of the board, so if airflow was coming from one side then component ‘A’ would get hot and from the other side then component ‘B’ would get hot. The other thing was that the customer, who is a very smart thermal engineer, had already set up everything and he was planning on using these heat sinks that had heat pipes embedded in them. The goal was to try and come up with a heat sink that would do the same thing, hopefully without requiring the heat pipes.

JO: Can we talk for a second about the application? You mentioned that airflow was from either side, the board was going to be used in a data center or a telecom node?
VB: It was for a telecom company.

JP: Was there a reason he didn’t want to use a heat pipe?
VB: I think probably cost and reliability. We use heat pipes embedded in the heat sinks too, so it’s not a something we never want to use, but the client wanted to throw that at us and see if we had alternatives.

JP: Can you take us through the board and the challenges that you saw?
VB: As you can see from this slide, there are four main components and two of the hottest ones are on the edge. Airflow can be from right to left or left to right, so which one would be the worst-case scenario?

Telecom PCB

JO: From right to left, I think?
VB: Correct. This one is a straightforward one to figure out because not only is the component smaller but the power is also higher. Even though [air] can go both ways, there’s a worst-case scenario.

This was the customer’s idea – a straight-fin heat sink with a heat pipe and he put one block of heat pipe in there instead of two or three heat pipes that would normally be embedded in there. You can clearly see what the goal was. You have a small component in here, you want to put a large heat sink over the top and you want to spread the heat throughout the base of the heat sink. All the other components are also occupied by straight-fin heat sinks.

JO: Okay, at this point in the analysis, this is the rough estimate of the problem that you face?
VB: This is a straightforward project in terms of problem definition, which can be a big issue sometimes. This time problem definition was clear because the customer had defined the exact heat sink that they wanted to use. It’s not a bad heat sink they just wanted an improvement, cost-wise, reliability-wise.

This is the G600, which is the air going from left to right. The two main components are represented here and we want to make sure that the junction temperatures that the CFD calculated is lower than the maximum junction temperatures allowed, which they were. These heat sinks work. As we always like to do at ATS, we like to have two, independent solutions to verify any problem. That was the CFD result but we also did the analytical modeling to see what these heat sinks are capable of and the percent difference from CFD was less than 10 percent. Twenty percent is the goal typically. If it’s less than 20 percent then you know you’re in the ballpark.

(Advanced Thermal Solutions, Inc.)

(Advanced Thermal Solutions, Inc.)

JO: Do you use a spreadsheet to do these analytical modeling?
VB: HSM, which is our heat sink modeling tool, and then for determining what velocity you have through the fins, the correct way of doing this is to come up with the flow pattern on your own. You go through all the formulas in the book and determine what the flow will be everywhere or figure out what CFD is giving you for the fan curve and check it with analytical modeling. You can look at pressure drop in there, look at the fan curve and see if you’re in the ballpark. You can also check other things in CFD, for example flow balance. Input the flow data into HSM and it will spit out what the thermal performance is for any given heat sink. HSM calculations are based on its internal formulas.

JO: We effectively have a proprietary internal tool. We’ve made a conscious decision to use it.
VB: To actually use it is unique. Not everybody would use it. A lot of people would skip this step and go straight to CFD. We use CFD too but we want to make sure that it’s on the right path.

JP: What do you see as the benefit of doing both analytical and CFD modeling?
VB: CFD, because it’s so easy to use, can be a tool that will lead you astray if you don’t check it because it’s very easy to use and the software can’t tell you if your results are accurate. If you do any calculation, you use a calculator. The calculator is never going to give you a wrong answer but just because you’re using a calculator doesn’t mean that you’re doing the math right. You want to have a secondary answer to verify that what you did is correct.

JP: What was the solution that you came up with for this particular challenge?
VB: We replaced these heat sinks with the heat pipe with maxiFLOW™, no heat pipe needed. One of the little tricks that I used was to off-set the heat sinks a little bit so that these fins are out here and so the airflow here would be kind of unobstructed. And I set this one a little lower so it would have some fins over here, not much, that would be unobstructed. The G600 configurations worked out with the junction temperatures being below what the maximum requirement was without having to use any heat pipes for the main components. There is also a note showing that one of the ancillary components was also below the max. Analytical modeling of that was within 10-11 percent.

The final PCB layout with maxiFLOW heat sinks covering the hottest components on both ends of the board. (Advanced Thermal Solutions, Inc.)

The final PCB layout with maxiFLOW heat sinks covering the hottest components on both ends of the board. (Advanced Thermal Solutions, Inc.)

As you noted, this was the worst-case scenario, going from right to left and you can see because it’s the worst-case scenario this tiny little component here that’s 14 watts that’s having all this pre-heated air going into it, it’s junction temperature was exactly at the maximum allowed. That’s not entirely great. We want to build in a little bit of margin but it was below what was needed.

The conclusion here was that maxiFLOW™ was able to provide enough cooling without needing to use the heat pipes and analytical calculation agreed to less than 20 percent. We would need to explore some alternate designs and strategies if we want to reduce the junction temperature even further because that close to the maximum temperature is uncomfortable. The other idea that we had was to switch the remaining heat sinks, the ones in the middle, which are straight fin, also to maxiFLOW™ to reduce pressure drop and to get more flow through this final component.

(Advanced Thermal Solutions, Inc.)

(Advanced Thermal Solutions, Inc.)

JP: If you have an idea like that, is it something that you broach with the customer?
VB: They really liked the result. If this was a project where the customer said, ‘Yep, we need this,’ then we would have said here’s the initial result and we have an additional strategy. At that point the customer would have said, ‘Yeah this is making us uncomfortable and we need to explore further’ or they would have said, ‘You know what? Fourteen watts is a max and I don’t know if we’ll ever go to 14 watts or the ambient we’re saying is 50°C but we don’t know that it will ever get to 50°C so the fact that you’re at max junction temperature at the worst-case scenario is okay by us.’

JP: Do you always test for the worst-case scenario?
VB: It’s always at the worst-case scenario. It’s always at the max power and maximum ambient temperature.

JP: Was this the first option that we came up with, using maxiFLOW™? Were there other options that we explored?
VB: Pretty much. The way that I approached it was doing the analytical first. You can generate 50 results from analytical modeling in an hour whereas it takes a day and a half for every CFD model – or longer. These numbers here were arrived at with analytical modeling; the height, the width, the top width, were all from analytical modeling, base thickness to measure spreading resistance, all of that was done on HSM and spreadsheets to say this will work.

JP: Do you find that people outside ATS aren’t doing analytical?
VB: No one is doing it, which is really bad because it’s very useful. It gives you a quick idea if it’s acceptable, if this solution is feasible.

To learn more about Advanced Thermal Solutions, Inc. (ATS) consulting services, visit https://www.qats.com/consulting or contact ATS at 781.769.2800 or ats-hq@qats.com.