Tag Archives: air flow

Understanding Loop Heat Pipes

Looped heat pipes (LHPs) are two-phase heat transfer devices that employ the same capillary pumping of a working fluid as used in conventional heat pipes. LHPs can transfer heat efficiently up to several meters at any orientation in the gravity field. When placed horizontally, this distance can extend to several tens of meters.

The development of the LHP was driven mainly by a limit of conventional heat pipes in which the wick system abruptly decreases its heat transfer capacity, if the evaporator is raised higher than the condenser. This need was acutely felt in aerospace applications where the heat generated by the electronics had to be transferred efficiently away for dissipation purposes. But the device needed to be much less sensitive to changes in orientation in the gravity field. Figures 1a and 1b show the schematic of an LHP [1].

The development of looped heat pipes dates from 1972.    Qpedia_0508_Loop_Heat_Pipes_Figure1Figure 1. Schematic of Principle of Operation of a Loop Heat Pipe [1, 2].

The first such device, with a length of 1.2m, a capacity of about 1 kW, and water as its working fluid, was created and tested successfully by the Russian scientists Gerasimov and Maydanik from the Ural Polytechnic Institute. With heat needing to be transported over a longer distance, and because the working fluid circulation in a heat pipe is directly proportional to the surface tension coefficient and inversely proportional to the effective pore radius of the wick, a different system for heat transport was required when the evaporator was above the condenser. This is shown in Figure 1.

The capillary head must be increased to compensate for pressure losses when the liquid is moving to the evaporator while operating against gravity. This can only be done by decreasing the effective pore radius of the wick. However, the increase in hydraulic resistance is approximately proportional to the square of the pore radius. As a result, it has not been possible to build a heat pipe of sufficient length that is capable of operating efficiently against gravity. Thus, there was incentive to develop LHPs, and they are now finding further application in modern electronics.

As stated, a number of limits impact the performance of an LHP. Qing et. al. [3] performed a detailed investigation of three key parameters on the performance of a looped heat pipe for use in cryogenics applications. This LHP is shown in Figure 2.

1) Effect of Wick Pore Size – It is well known that the maximum capillary pressure produced by the primary wick depends on both the effective pore size and the surface tension of the working fluid. In general, the smaller the pore size and the larger the surface tension, the higher the maximum capillary pressure. A smaller pore size will also result in larger flow resistance which will limit heat transfer capability. The pore sizes considered were 2 and 10 μm.
Figure 2. Schematic of an LHP for Cryogenics Application [3].
When the pore size of the primary wick is larger (10mm), the heat transfer capability of the LHP can reach 26 W only when a smaller reservoir (60cc) is used. Its ability to operate against gravity is greatly weakened. With a wick pore size of 2mm, the LHP can transfer a heat load of 26 W under horizontal orientation no matter what size reservoir volume is used.

Qpedia_0508_Loop_Heat_Pipes_Figure2Figure 2. Schematic of an LHP for Cryogenics Application [3].

2. Effect of Reservoir Size – It is interesting to see how the LHP will function with different reservoir sizes. As shown in Figure 3, the combination of gravity and reservoir size has a direct impact on the heat transfer capability of the LHP. Under adverse gravity, the heat transfer capability of the LHP is 12 W using the larger reservoir and only 5W using the smaller one.Qpedia_0508_Loop_Heat_Pipes_Figure3
Figure 3. Heat Transfer Capability of LHPs with 2mm and 10mm Pore Diameters in Horizontal Orientation [3].

3. Effect of Working Fluid – Fluids have different surface tensions that impact the heat transport capability of the LHP.

Figure 4 demonstrates this capability: Qpedia_0508_Loop_Heat_Pipes_Figure4
Figure 4. Heat Transfer Capability of an LHP When the Working Fluid is Oxygen [3].

Though not shown in Figure 4, when the working fluid is oxygen instead of nitrogen, the heat transfer capability can be up to 50 W under horizontal orientation with the other experimental conditions remaining the same.

LHP Applications
This discussion has highlighted the functionality and importance of design parameters on the performance of LHPs. While this discussion concerns an aerospace application, LHPs have been used for standard electronics as well. Maydanik gives several examples where miniature LHPs are used for microelectronics [1]. Figure 5 shows the “use of flat disk-shaped evaporators in LHPs. The scheme and the external view of such evaporators 10 and 13mm
thick, whose thermo-contact surface is made in the form of a flange 45 mm in diameter for fixing the heat source. The results of development of ammonia LHPs 0.86m and 1m long with a vapor and a liquid line 2mm in diameter equipped with such evaporators of stainless steel. In trials the devices demonstrated serviceability at any orientations in 1-g conditions. The maximum capacity was, respectively, 90–110 W and 120–160 W, depending on the orientation, and the value of the minimum thermal resistance 0.30 K/W and 0.42 K/W.”

Figure 5. Photo and Schematic of Flat, Disk-Shaped Evaporators in an LHP [1].

Another design is shown in Figure 6, where miniature LHPs are made from stainless steel and copper and the working fluids are ammonia and water . The ammonia LHP has a 5mm diameter evaporator with a titanium wick, and 2mm diameter lines for vapor and liquid.. The water LHP is equipped with a 6mm diameter evaporator and 2.5mm diameter lines. The effective length of the devices is about 300mm.

Figure 6. Miniature LHPs [1].

Each has a finned condenser, 62mm long, whose total surface is about 400cm2. The condensers are cooled by a fan providing an air flow rate of 0.64 m3/min, at a temperature of 22 ± 2°C.
Tests show that the maximum capacity of the ammonia LHP is 95 W at an evaporator wall temperature of 93°C. The maximum capacity for the water LHP was not achieved, but at the same temperature it was equal to 130 W. The minimum thermal resistance values of the LHP, 0.12 K/W and 0.1K/W, were obtained at heat loads of 70 W and 130 W, respectively. It should be noted that the ammonia LHP demonstrated a higher value of for heat transfer coefficient in the evaporator, which reached 78,000 W/m2K at a heat flow density of 21.2 W/cm2 at the surface of an interface with an area of 4 cm2. For the water LHP, these values were, respectively, 31,700 W/m2K and 35 W/cm2. In this case, at the surface of the evaporator’s active zone, the heat flow density was much higher. For the ammonia LHP it was 44.5 W/cm2, and for the water was 69.1 W/cm2 [3].

Figure 7. Photo and Schematic of a CPU Cooler Based on an LHP [4, 5].

Another example of LHPs in microelectronics is shown in Figure 7. Here, an LHP was designed for cooling a 25-30 W processor with a total weight of 50g. This LHP was based on copper-water with an evaporator diameter of 6mm.
In conclusion, LHPs may resolve many of the drawbacks seen in conventional heat pipes and provide additional capabilities. As shown by Maydanik, the capillary mechanism, in conjunction with the reservoir size and the use of different fluids, can bring significant advantages that may not readily be seen in heat pipes. Some of these include:

  • the use of fine-pored wicks,
  • maximum decrease in the distance of the liquid motion in the wick,
  • organization of effective heat exchange during the evaporation and condensation of a working fluid, and,
  • maximum decrease in pressure losses in the transportation (adiabatic) section.

Along with the advantages gained from LHPs, the use of liquids in electronics and potential operational instability must be considered carefully. Operational instability, if not managed, could conceivably create thermal cycling on the electronics component being cooled. As with heat pipes,operational dry out or the loss of fluid due to leakage could render the LHP inoperable. Otherwise, LHPs appear to be an attractive supplement to the arsenal of cooling options available to the design engineer. ■

1. Maydanik, Y.., Loop Heat Pipes, Applied Thermal Engineering, 2005.
2. Muraoka, I., Ramos, F., Vlassov, V., Analysis of the Operational Characteristics and Limits of a Loop Heat Pipe with Porous Element in the Condenser, International Journal of Heat and Mass Transfer, V44, 2001.
3. Mo, Q., Jingtao, L., Jinghui, C., Investigation of the Effects of Three Key Parameters on the Heat Transfer Capability of a CLHP, Cryogenics V47, 2007.
4. Chang, C., Huang, B., Maydanik, Y., Feasibility of a Mini LHP for CPU Cooling of a Notebook PC, Proc. of 12th Int. Heat Pipe Conference, Moscow, Russia, May 2002.
5. Pastukhov, V., Maydanik, Y., Vershinin, C., Korukov, M., Miniature Loop Heat Pipes for Electronic Cooling

round or flat heat pipes for electronics coolingHow to subscribe to qpedia

Flow Visualization in PCB Testing: Part 2

In part 2 of our blog series on flow visualization, we discuss the benefits of liquid flow visualization, along with several primary methods for creating successful flow visualization.

Part 2: Liquid Flow Visualization

Liquid Flow Visualization

Flow visualization is usually easier to perform in water than air and yields results of better quality. As with smoke visualization, dye entrainment is successful mostly in laminar flow. The enhanced mixing in turbulent flow causes the smoke streaks to diffuse too rapidly to be of value as tracers. Compared to smoke visualization in air, dye entrainment in liquids is helped by the fact that the mixing between most dyes and water is less intense than between smoke and air. As a result, water-flow tunnels are frequently used to study air flows by testing scaled models at lower velocity. This often provides a better description of the flow.
A liquid flow model is scaled with a different working fluid than air using dimensional analysis. For a treatment of the principals of dimensional analysis and similitude that should be used in applying flow visualization in model experiments, reference can be made to any standard textbook on fluid mechanics. For the flow conditions around a model to be completely similar to those of the prototype, all relevant dimensionless parameters must have the same corresponding values: the model and prototype are then said to possess geometric, kinematic, dynamic and thermal similarity.
To visualize the flow, water-soluble dyes such as food coloring, potassium permanganate, methylene blue, ink and fluorescent ink may be injected using hypodermic needles or entrained from holes or slots in the walls of a test section. It is important that the velocity and density of the injected dye equal those of the surrounding fluid to maintain a stable dye filament and reduce disturbance of the surrounding flow.

In summary, fluid flow visualization is a powerful and unique technique for quickly identifying the flow distribution and approach air velocity to thermally challenging components in a complex PCB structure. By using this technique, one can attain the following:
-Examine the PCB layout at the design stage for expected thermal performance, e.g., determine flow stagnation areas.
-Make component layout recommendations that provide a thermally optimum board.
-Identify approach air velocities necessary for component thermal management and the choice of cooling system.

Click here for part 1 of this three part series
Click here for part 3 of this three part series

Flow Visualization in PCB Testing: Part 1

In our first post about flow visualization, we discuss the benefits of flow visualization, along with several primary methods for creating successful flow visualization.

Part 1: Best Techniques for Air Flow Visualization

PCBs support a multitude of components with varied geometries, electrical functions, power dissipation and ther­mal performance needs. For a PCB to work properly, a component’s thermal requirements must be met locally or at the system level. Regardless of the type of housing that surrounds a PCB, its cooling system must be designed so that diverse components are electrically functional and run at temperatures that help them reach their expected life spans.

Much effort is needed to meet a component’s thermal re­quirements, whether by enhanced fluid flow (liquid or air) or by adding a cooling solution, e.g., heat sink, onto the component. Except for a conduction cooled PCB, where a cold plate extracts heat from the board, electronics are typically in contact with some sort of cooling fluid. In many cases, the PCB is in direct contact with the coolant. This creates a very complex problem along with a unique opportunity.

The problem stems from the intricate topology of the PCB. Highly complex flows are observed on PCBs due to their three dimensional protrusions, i.e., components. A typi­cal PCB sees every imaginable flow structure. These include laminar, turbulent, separated flow, reversed flow, pulsating, locally transient and others. Flow visualization has the potential to yield more insight into a fluid flow or convection cooling problem than any other single method. Many misconceptions can usually be cleared up by flow visualization. However, it is important to use the technique most suited to a given problem.

Air Flow Visualization

Smoke entrainment is the most common visualization technique for laminar air flows. But it has somewhat limited use in turbulent flows due to its rapid diffusion by turbulent mixing. Smoke can be produced from many sources, but essentially it is made by either smoke-tube or smoke-wire.

In the smoke-tube method, vaporized oil is used to form a visible whitish cloud of small particles as the hot oil vapor condenses. Consideration must be given to the vortices shed by the smoke probe itself, since the most visible small-scale features often arise from the probes own wake. This effect is important for probe diameter-based Reynolds numbers exceeding about 15. Because it is impractical to reduce the probe diameter beyond a point and still get a reasonable amount of smoke flow, the smoke can be injected upstream of a convergence section to eliminate wake effects. A key disadvantage to the smoke-tube method is that the smoke is produced hot and rises due to its own buoyancy, thus it doesn’t follow the local flow faithfully. To reduce buoyance effects, the smoke can be cooled in a long length of tubing from the point of generation before its introduction into the flow.

In the smoke-wire method, smoke is generated as a sheet by coating a thin wire with oil, stretching it across the flow, and heating it with a pulse of current. Almost any wire and power supply can be used in this technique. The oil should be chosen carefully to have a broad boiling plateau, rather than a single temperature, in order to generate good smoke. Model train oil is suitable for this method.

The end result of board level flow visualization is PCBs that are thermally optimized and require no re-spin because of thermal constraints. If the board is thermally laid out, heat sinks and other cooling solutions are often not required.

Click  here for part 2 of this three part series
Click here for part 3 of this three part series

Performance Differences between Fan Types Used for Electronics Cooling

Billions of fans are now in use for active cooling of PCBs and other hot electronic components. An article in Qpedia, the thermal e-magazine from Advanced Thermal Solutions, Inc., (ATS), explores the two most common types of fans used in electronics cooling: the radial (or centrifugal) fan and the axial fan.

The difference between the axial fan and radial fans can be divided into two parts, namely geometry and fluid dynamics.

An axial-flow fan has blades that force air to move in a parallel direction to the shaft around which the blades rotate. For a radial fan, the air flows in on a side of the fan housing, then turns 90 degrees and accelerates, due to centrifugal force as it exits the fan housing. These differences in air flow direction have design implications. For example, a radial fan can blow air across a PCB more efficiently, and use less space, than mounting an axial fan to blow air down onto a board.

The fluid flow rate through an electronics system, e.g., enclosure, is determined by the intercept between the fan and system curves that plot the air pressure drop over volumetric flow rate. A system’s air flow curve can be calculated using 1D fluid mechanics, or it may require the use of high performance CFD or experimental data. In general, for the same power and rotation speed, the radial fan can achieve a higher pressure head than an axial fan. However, an axial fan can achieve a higher maximum flow rate than a radial fan.

In theory, this same approach applies when using two fans in series or in parallel. When the fans are in series, the maximum flow rate should stay the same as for the single fan, but the maximum pressure head doubles. When using two fans in parallel, the maximum pressure head should remain the same as for the single fan, but the flow rate doubles. In real situations, though, the fans may interfere with each other, thus providing lower than expected results. Thus, actual experimentation is typically needed.

Download the Full ATS White Paper Performance Differences Between Fans and Blowers and Their Implementation

What are Fan Laws and how do you use them in thermal management design?

During a product’s life cycle a redesign may be carried out which replaces older components with new, higher powered ones. Due to the resulting higher heat flux, increased thermal management is often needed to maintain adequate component junction temperatures and reduce temperature rise within the system.  Fan Laws are useful mathematical tools to understand, compare and contrast different fan approaches.  Using Fan Laws before choosing a fan can help engineers to make solid choices to reduce cost, experimentation and time to market.  ATS’s five-page presentation on Fan Laws for thermal management which includes examples on how to use them, is a good introduction to this important engineering tool:

[slideshare id=4205722&doc=atsslidecastfanlaws-100521141058-phpapp02]