Tag Archives: heat exchangers

3-D-printed Heat Exchangers provide flexibility in thermal management

By Norman Quesnel
Senior Member of Marketing Staff
Advanced Thermal Solutions, Inc. (ATS)

Additive manufacturing technologies have expanded in many directions in recent years with applications ranging across numerous industries and applications, including into the thermal management of electronics. As metal 3-D printing techniques have improved and become commercially viable, engineers are using it to create innovative cooling solutions, particularly heat exchangers.

3-D Printed Heat Exchangers
Figure 1. 3-D developed heat exchangers can feature shapes not obtainable using traditional forming methods. [2]

Why are engineer turning to additive manufacturing?

One reason is that additive manufacturing allows for generous cost savings. Companies can reduce 15-20 existing part numbers and print them as a single component. A single part eliminates inventory, additional inspections, and assemblies that would have been necessary when components were produced individually.

As AdditiveManufacturing.com notes, “Some envision AM (additive manufacturing) as a complement to foundational subtractive manufacturing (removing material like drilling out material) and to a lesser degree forming (like forging). Regardless, AM may offer consumers and professionals alike, the accessibility to create, customize and/or repair product, and in the process, redefine current production technology.” [1]

Developed at the Massachusetts Institute of Technology (MIT), 3-D printing is the most common and well-known form of additive manufacturing. Three-dimensional objects are made by building up multiple layers of material. Thanks to the continued (and rapid) development of the technology and advanced research in materials science, the layers can be composed of metal, plastic, concrete, living tissue or other materials.

In industrial applications, 3-D printing has encouraged creativity. With additive manufacturing, designers can create complex geometric shapes that would not be possible with standard manufacturing processes. For example, shapes with a scooped out or hollow center can be produced as a single piece, without the need to weld or attach individual components together. One-piece shapes can provide extra strength, with few or no weak spots that can be compromised or stressed. [4]

Making 3-D Printed Heat Exchangers

Heat exchangers are integral to thermal management. Any time heat, cool air, or refrigeration are required, a heat exchanger has to be involved to dissipate the heat to the ambient. This can be as simple as a standard heat sink or a complex metal structure used in liquid cooling. It can be as small as a few millimeters or as large as a building. Heat exchange is a multi-billion-dollar industry touching everything from consumer goods to automotive and aerospace engineering.

Compact heat exchangers are typically composed of thin sheets of material that are welded together. The complexity of the designs, particularly the density of the fin field, makes production both challenging and time-consuming, while the material used for the welding process adds to the overall weight of the part. Heat exchangers produced through 3-D printing techniques (such as those pictured below) can be made quicker, lighter, and more efficiently.

Figure 2. 3-D developed heat exchanger had a 20% increase in efficiency. [2]

In 2016, a Department of Energy-funded consortium of researchers developed a miniaturized air-to-refrigerant heat exchanger that was more compact and energy-efficient than current market designs. CEEE and 3-D Systems teamed to increase the efficiency of a 1 kW heat exchanger by 20 percent while reducing weight and size. The manufacturing cycle for the heat exchanger was reduced from months to weeks. [4]

Figure 3. A 3-D printed milli-structured heat exchanger made from stainless steel with a gyroid design. [5]

Using direct metal printing (DMP), manufacturers delivered a 20-percent more efficient heat exchanger and an innovative design. It was produced in weeks not months and with significantly lower weight. The one-part, 3-D-printed heat exchanger required minimal secondary finishing operations.

Ohio-based Fabrisonic uses a hybrid metal 3-D printing process, called Ultrasonic Additive Manufacturing (UAM), to merge layers of metal foil together in a solid-state thanks to high frequency ultrasonic vibrations. [5]

Figure 4. Aluminum and copper heat exchanger printed using ultrasonic additive manufacturing. (Photo via Fabrisonic) [6]

Fabrisonic mounts its hybrid 3-D printing process on traditional CNC equipment – first, an object is built up with 3-D printing, and then smoothed down with CNC machining by milling to the required size and surface. No melting is required, as Fabrisonic’s 6 ft. x 6 ft. x 3 ft. UAM 3-D printer can scrub metal foil and build it up into the final net shape, and then machines down whatever else is needed at the end of the process.

This 3-D printing process was recently given a stamp of approval by NASA after testing at the Jet Propulsion Laboratory (JPL). A report from NASA and Fabrisonic said, “UAM heat exchanger technology developed under NASA JPL funding has been quickly extended to numerous commercial production applications. Channel widths range from 0.020 inch to greater than one inch with parts sized up to four feet in length.” [6]

There are challenges involved, to be sure. In an article from Alex Richardson of Aquicore highlighting research done at the University of Maryland, researchers discuss the problems that 3-D printing still has competing on price against traditional manufacturing techniques and the difficulties involved with physically scaling a technology up.

In the article, Vikrant Aute of the University of Maryland Center for Environmental Energy Engineering noted that his research team was “considering modularization to overcome the latter issue: Instead of making the exchangers bigger, it might be possible to arrange lots of them together to accomplish the same task.” [7]

Research Continues to Improve 3-D Printing Process

While there have been numerous advancements in the technology of metal 3-D printing, research is continuing on campuses and in companies around the world to try and improve the process and make it easier to create increasingly complex heat exchangers.

For example, Australia-based additive manufacturing startup Conflux Technology received significant funding to develop its technology specifically for heat exchange and fluid flow applications. [8] Another example was the University of Wisconsin-Madison, which received a grant from the U.S. Department of Energy (DOE) Advanced Research Projects Agency-Energy (ARPA-E) to build heat exchangers with “internal projections to increase turbulence and facilitate heat transfer. Such intricate shapes are impossible with traditional manufacturing.” [9]

In 2018, U.K.-based Hieta Technologies partnered with British metrology company Renishaw to commercialize its 3-D-printed heat exchangers. Renishaw used its AM250 system to 3-D print walls of the heat exchanger as thin as 150 microns. The samples were heat treated and characterized to confirm that the laser powder bed fusion process was effective. The process took only 80 hours, was 30 percent lighter, and had 30 percent less volume, while still meeting the heat transfer and pressure drop requirements. [10, 11]

Last month, GE Research announced that it was leading a multi-million-dollar program with Oak Ridge National Laboratory (ORNL) and the University of Maryland to develop compact heat exchangers that can withstand temperatures as high as 900°C and pressures as high as 250 bar. This was also based on funding from ARPA-E, as part of its HITEMMP (High-Intensity Thermal Exchanger through Materials and Manufacturing Processes) program. [12]

3-D Printed Heat Exchangers
Fig. 5. GE Research is leading a project to design a new, high-temperature heat exchanger with 3-D printing. [12]

To build the new heat exchanger, GE engineers are using a novel nickel superalloy that is designed for high temperatures and is crack-resistant. University of Maryland researchers are working with GE to create biological shapes that will make the heat exchanger more efficient and ORNL researchers are providing corrosion resistance expertise to develop the materials for long-term use.

These are just some examples of the many ways that 3-D printing has impacted electronics cooling. Researchers at the Fraunhofer Institute for Laser Technology ILT in Germany have demonstrated the feasibility of 3-D printing copper [13], U.K. researchers 3-D printed “smart materials” for energy storage [14], a researcher at Penn State (soon to be at MIT) is developing methods for creating rough surfaces through additive manufacturing to enhance boiling heat transfer [15], and at Virginia Tech researchers developed a new process for 3-D printing piezoelectric materials [16].

The technology is growing by leaps and bounds each year and is enhancing the options for engineers in the thermal management industry.

References

  1. http://additivemanufacturing.com/basics/
  2. https://www.3-Dsystems.com/learning-center/case-studies/direct-metal-printing-dmp-enables-ceee-manufacture-lean-and-green-heat
  3. https://www.spilasers.com/application-additive-manufacturing/additive-manufacturing-a-definition/
  4. https://www.3-Dsystems.com/learning-center/case-studies/direct-metal-printing-dmp-enables-ceee-manufacture-lean-and-green-heat
  5. http://fabrisonic.com/ultrasonic-additive-manufacturing-overview/
  6. https://aquicore.com/blog/3-D-printing-heat-exchangers/
  7. https://cdn2.hubspot.net/hubfs/3985996/Articles%20-%20published/NASA%20HX%20White%20Paper%20EWI.pdf
  8. https://www.confluxtechnology.com
  9. https://www.engr.wisc.edu/researchers-bring-3d-printing-cool-industry/
  10. https://3dprint.com/198933/hieta-renishaw-heat-exchangers/
  11. https://www.youtube.com/watch?v=r42Dc_PKBEc
  12. https://www.ge.com/research/newsroom/ge-researchers-utilize-3d-printing-design-ultra-performing-heat-exchanger-more-efficient
  13. https://www.ilt.fraunhofer.de/en/press/press-releases/press-release-2017/press-release-2017-08-30.html
  14. https://www.qmul.ac.uk/media/news/2018/se/scientists-design-material-that-can-store-energy-like-an-eagles-grip.html
  15. https://news.psu.edu/story/574464/2019/05/15/academics/heat-transfer-additive-manufacturing-powers-nsf-graduate-research
  16. https://vtnews.vt.edu/articles/2019/01/3d_printing_discovery.html

For more information about Advanced Thermal Solutions, Inc. (ATS) thermal management consulting and design services, visit https://www.qats.com/consulting or contact ATS at 781.769.2800 or ats-hq@qats.com. To register for Qpedia and to get access to its archives, visit 
https://www.qats.com/Qpedia-Thermal-eMagazine.

Recent Research Into Next-Generation Heat Exchangers for Electronics Thermal Management

Since it was published around one year ago, the “What is a Heat Exchanger” video (watch it below) has been one of the most watched on the ATS YouTube page. With the obvious interest in heat exchangers in particular (and liquid cooling in general), we are curating recent research into the technology and its applications in the thermal management of electronics.

Heat Exchangers
Heat Exchangers are a common component in liquid cooling solutions for electronics. Below is recent research into this growing technology. (Advanced Thermal Solutions, Inc.)

The following are three examples of papers written about heat exchangers including applications in the automotive space to developing microchannels to enhance thermal performance to optimizing heat exchangers for use with high-powered electronics.

We have posted several pieces of content on this blog about heat exchangers in the past. Examples include:

Since heat exchangers remain a popular topic for engineers, we will continue to add new pieces about the technology in the coming months.

Novel Power Electronics Three-Dimensional Heat Exchanger

Read the full paper at https://www.nrel.gov/docs/fy14osti/61041.pdf.

Abstract: Electric-drive systems, which include electric machines and power electronics, are a key enabling technology to meet increasing automotive fuel economy standards, improve energy security, address environmental concerns, and support economic development. Enabling cost-effective electric-drive systems requires reductions in inverter power semiconductor area, which increases challenges associated with heat removal. In this paper, we demonstrate an integrated approach to the design of thermal management systems for power semiconductors that matches the passive thermal resistance of the packaging with the active convective cooling performance of the heat exchanger. The heat exchanger concept builds on existing semiconductor thermal management improvements described in literature and patents, which include improved bonded interface materials, direct cooling of the semiconductor packages, and double-sided cooling. The key difference in the described concept is the achievement of high heat transfer performance with less aggressive cooling techniques by optimizing the passive and active heat transfer paths. An extruded aluminum design was selected because of its lower tooling cost, higher performance, and scalability in comparison to cast aluminum. Results demonstrated a 102% heat flux improvement and a package heat density improvement over 30%, which achieved the thermal performance targets.

Microchannel Heat Exchanger for Electronics Cooling Applications

Read the full paper at http://proceedings.asmedigitalcollection.asme.org/proceeding.aspx?articleid=1636343.

Abstract: The power consumption of electronic devices, such as semiconductor diode laser bars, has continually increased in recent years while the heat transfer area for rejecting the associated thermal energy has decreased. As a result, the generated heat fluxes have become more intense making the thermal management of these systems more complicated. Air cooling methods are not adequate for many applications, while liquid cooled heat rejection methods can be sufficient. Significantly higher convection heat transfer coefficients and heat capacities associated with liquids, compared to gases, are largely accountable for higher heat rejection capabilities through the micro-scale systems. Forced convection in micro-scale systems, where heat transfer surface area to fluid volume ratio is much higher than similar macro-scale systems, is also a major contributor to the enhanced cooling capabilities of microchannels. There is a balance, however, in that more power is required by microchannels due to the large amount of pressure drop that are developed through such small channels. The objective of this study is to improve and enhance heat transfer through a microchannel heat exchanger using the computational fluid dynamics (CFD) method. A commercial software package was used to simulate fluid flow and heat transfer through the existing microchannels, as well as to improve its designs. Three alternate microchannel designs were explored, all with hydraulic diameters on the order of 300 microns. The resulting temperature profiles were analyzed for the three designs, and both the heat transfer and pressure drop performances were compared. The optimal microchannel cooler was found to have a thermal resistance of about 0.07 °C-cm2 /W and a pressure drop of less than half of a bar.

Thermal Analysis of the Heat Exchanger for Power Electronic Device with Higher Power Density

Read the full paper at http://pe.org.pl/articles/2012/12a/70.pdf. Abstract: Liquid cooling system has been used in high power electronic device systems to cool down the temperature of power electronic device. Heat exchanger is an important part of liquid cooling system to transfer the heat generated by power electronic device into air. In this paper, a Streamline-upwind/Petrov-Galerkin (SUPG) stabilized finite element analysis method was proposed to solve the water and air governing formulas including the mass conservation equation, the momentum conservation and the energy conservation equation. Furthermore, the thermal characteristic of a heat exchanger is simulated, and the result was compared with an experiment. The comparison shows that this method is effective.


For more information about Advanced Thermal Solutions, Inc. (ATS) thermal management consulting and design services, visit https://www.qats.com/consulting or contact ATS at 781.769.2800 or ats-hq@qats.com.

Industry Developments: Cabinet Cooling Solutions

Critical electronics are routinely housed inside metal cabinets of different dimensions. Although their applications vary, a common issue within these enclosures is excess heat, and the danger it poses to their electronics. This heat can be generated by internal sources and intensified by heat from outside environments.

Cabinet Cooling

The trends toward compact, multi-function electronic controls, variable speed drives, programmable logic controllers, and tightly-packed processors and server racks can also cause thermal problems. Excess heat can adversely affect digital displays, controls, breakers, ICs and PCBs. In most cases this heat can’t be prevented, so it must be removed to ensure the proper function and service life of components and boards.

Issues with excess cabinet heat have been around for decades, and many cooling approaches have been utilized. Among the most popular are air conditioners, vortex coolers and heat exchangers. Each method has benefits and shortcomings, and improvements are continually made by the engineers who design these cooling systems.

Air Conditioners

As cabinet designs adapt to new needs, air conditioners are being designed for tighter spaces, higher performance and lower costs. Today’s ACs include traditional vapor-compression-refrigeration technology, as well as new thermoelectric systems.

IceQube is providing the Qube Series of air conditioners, which the company described as the world’s smallest compressor-based air conditioner and an ideal cooling solution for compact enclosures with high heat loads. The compact air conditioners are available in power coated and stainless-steel housings. [1]

Figure 1. The Qube series of vertical mount air conditioners from IceQube come in widths as narrow as six inches. [1]

The Blade air conditioners series, also from IceQube, is specially-designed for door mount applications on electrical enclosure cabinets. They have a space-saving, ultra-thin designs for use in NEMA type 12, 3R, 4 and 4X cabinet designs. Cooling performance from the Blade ACs is up to 50,000 BTU/hr. [2]

Thermoelectric ACs, also called Peltier ACs, work without compressors or refrigerants. Some feature efficiently-designed fans as their only moving parts to provide effective internal cabinet cooling. These models typically provide lower cooling performance, but enough to meet cabinet cooling requirements.

TECA recently introduced internally mounted thermoelectric air conditioners for enclosure cooling where there can be no external protrusions from the enclosure. Available in five sizes, the new air conditioners can be horizontally or vertically mounted inside an enclosure. Performance ratings range from 155 BTU/hr – 390 BTU/hr. These air conditioners use no refrigerants or compressors and have no moving parts other than their fans. [3]

Figure 2. Internally mounted TECA air conditioners are suited for use where space requirements prohibit external protrusion. [3]

When high levels of temperature drop are needed inside a cabinet, EIC Solutions offers an alternative to compressor-based air conditioners. EIC’s new High Delta T thermoelectric air conditioners provide a maintenance-free, solid-state solution for applications that require a large ΔT in any environment. ΔT is the difference between return air temperature and supply air temperature.

The new ThermoTEC 142 and 146 series air conditioners feature high ΔT capabilities to achieve greater drops from ambient temperatures compared to standard models. [4]

Figure 3. New thermoelectric air conditioners have high ΔT capabilities for greater drops from ambient temperatures than other TEC models. [4]

The 142 series (500 BTU/hr) and the 146 series (1000 BTU/hr) feature rugged, type 304 stainless steel, and NEMA 4X construction.

Another compressor-based air conditioner is the SpectraCool from Hoffman. Its filter-free design reduces clogging that can cause system failures. SpectraCool units feature an energy-efficient compressor and earth-friendly refrigerant. Models are available for up to 20,000 BTU/hr cooling performance.

The Hoffman SpectraCool ACs can also be controlled remotely. Access comes via a unique IP address to each equipped unit. This allows monitoring and control of cooling, heating, alarms, the compressor and the ambient fan. [5]

The company’s Easy Swap adaptor plenums provide a quick and easy way to upgrade the SpectraCool systems and deliver up to 23 percent greater energy efficiency.

Vortex Cabinet Coolers

Vortex enclosure cooling systems work by maintaining a slight pressurization in the cabinet to keep electrical and electronic components clean and dry. Most vortex systems are thermostatically-controlled to keep cabinet temperatures within a specified temperature range.

The core of these coolers is composed of vortex tubes, mechanical devices that separate compressed gas into hot and cold streams. Air emerging from the cold end can reach -50°C, while air emerging from the hot end can reach 200°C. The tubes have no moving parts. [6]

EXAIR Cabinet Cooler systems use vortex tube technology to create a cold air outlet flow which is pumped into an electronic cabinet. As air is pushed into the cabinet the Cabinet Cooler system also provides its own built-in exhaust. There is no need to vent the cabinet. This creates a positive purge on the cabinet to keep out dirt, dust and debris.

Figure 4. The Exair dual cabinet cooler system minimizes compressed air use and produces 20°F air for cabinet cooling. [7]

EXAIR Cabinet Cooler systems are unaffected by vibration, which can cause refrigerant leaks and component failures in traditional air conditioners. They are UL listed for NEMA 12, 4 and 4X integrity and are marked CE for conforming to European Union safety standards.

ITW Vortec, a leader in vortex tube technology and enclosure cooling provides the UL-listed Electric Vortex A/C. The Electric Vortex A/C is an electric thermostat cabinet cooler with plug-and-play functionality. Unlike traditional electric thermostat enclosure coolers which require additional wiring and piping to properly install, the new Electric Vortex A/C comes pre-wired, requires no additional wiring and just needs an outlet within six feet of the unit.

This new solution eliminates the need for an external solenoid valve and the piping traditionally used to install other enclosure cooler solutions. An electric thermostat allows the user to set the desired temperature to be maintained in the enclosure. The cooler will only turn on when necessary, conserving energy from compressed air usage.

Figure 5. The Electric Vortex air conditioner from Vortec eliminates the need for an external solenoid valve. [8]

Heat Exchangers

Using heat exchangers as cabinet thermal solutions can provide an enhanced solution in terms of performance, cost-effectiveness and smaller size designs. There are both air-to-air, and liquid-to-air models.

Air-to-Air Exchangers

Air-to-air heat exchangers are a proven and dependable cooling method that relies on passive heat pipe or folded fin impingement cores to disperse the heat from within cabinet enclosures to the outside ambient air.

Figure 6. Air-to-air heat exchangers transfer heat without moving parts. [9]

The Stratus line of air-to-air heat exchangers from AutomationDirect includes 120 VAC and 24 VDC models. The series has a closed-loop cooling system, using the heat pipe principle to exchange heat from inside to outside the cabinet.

Each heat pipe has an evaporator section and a condenser section. These are separated by a permanent baffle to provide a closed loop. The coil systems use aluminum end plates and baffles, which improve conduction and reduce corrosion for longer life. The Stratus heat exchangers are available in models for NEMA 4 and 4X enclosures. Units come in three frame sizes (compact, deep, and tall) with up to 72 watts capacity. They are equipped with two circulating fans with sealed overload protectors. [9]

Liquid-to-Air Exchangers

Liquid-to-air heat exchangers provide cooling through a closed-loop system. They are designed for use where heat dissipation needs are too great for natural or forced air convection systems, or where remote heat dissipation is required. Much of their higher cooling performance comes from using fluids with much higher thermal conductivity than air. Typical applications include cabinets, MRI and process cooling.

Figure 7. The WL500 water-cooled, liquid-to-air heat exchanger has a high-pressure pump for fast flow rates. [10]

Conclusion

Cabinet-housed electronics are susceptible to excess heat generated from within along with heat from outside environments. Thus, keeping the electronics cool inside cabinets is essential to maximizing internal device life cycles. Numerous cooling methods are available, including air conditioning, vortex cooling, and heat exchangers.

Each of these methods has its own methodology, such as the choice of air or liquid cooling, to provide options for meeting cooling requirements. A thorough awareness of options, application requirements, and resources should lead to the best cabinet cooling solutions

References
1. IceQube, http://www.iceqube.com/air-conditioners/qube-series-mm/
2. IceQube, http://www.iceqube.com/blade-series-products/blade-series-air-conditioners/
3. TECA Corporation, http://www.thermoelectric.com/2010/ad/internal-mounted.htm
4. EIC Solutions, Inc., http://www.eicsolutions.com/
5. Hoffman, http://www.pentairprotect.com/hoffman/
6. Vortex Tube, https://en.wikipedia.org/wiki/Vortex_tube
7. EXAIR, http://www.exair.com/ https://www.youtube.com/watch?v=CoxzwJmbyxY
8. ITW Vortec, https://www.vortec.com/p-284-electric-vortex-ac.aspx
9. AutomationDirect, http://www.automationdirect.com
10. Laird, http://www.lairdtech.com/products/wl-500

ATS Unveils Heat Exchanger Selection Tool

In 2017, Advanced Thermal Solutions, Inc. (ATS) added to its liquid cooling products with a new line of tube-to-fin, liquid-to-air heat exchangers with the industry’s highest density fins, which maximize heat transfer and provide greater cooling than other heat exchangers on the market.

Heat Exchanger Selection Tool

ATS released a line of tube-to-fin, liquid-to-air heat exchangers with the industry’s highest density fins to optimize heat transfer. (Advanced Thermal Solutions, Inc.)

ATS heat exchangers are available in seven different sizes and can be ordered with or without fans depending on your specific design requirements. Altogether, ATS offers 49 different heat exchanger options (not including the customized options to meet customer needs).

To make the selection process easier for engineers, ATS has recently unveiled a new Heat Exchanger Selection Tool that will point engineers to the exact option that will meet the inputted criteria.

Heat Exchanger Selection Tool

The tool asks five questions (measurement type in parentheses):

  • Air temperature from inlet to heat exchanger (Tai°C)
  • Heat need to be extracted by heat exchanger (QtotalW)
  • Water exit temperature from heat exchanger (Tfo°C)
  • Water flow rate (GPM)
  • Fan voltage (V)

Plug answers in to these questions and hit the “Optimum Heat Exchanger” button to see which of the ATS heat exchangers fits your specific liquid cooling system needs. Once you have the right part number, you can now purchase the right heat exchanger from Digi-Key Electronics.

In addition to heat exchangers, ATS has an array of liquid cooling products, including cold plates that provide 30 percent better thermal performance than comparable products on the market.

To learn more about the full line of liquid cooling options from ATS, visit https://www.qats.com/Products/Liquid-Cooling.

For more information about Advanced Thermal Solutions, Inc. (ATS) thermal management consulting and design services, visit https://www.qats.com/consulting or contact ATS at 781.769.2800 or ats-hq@qats.com.

ATS Showcasing Thermal Solutions for Power Electronics at APEC 2018

Advanced Thermal Solutions, Inc. (ATS), a leading-edge thermal engineering and manufacturing company focused on the thermal management of electronics, is pleased to announce that it will be showcasing its new line of liquid cold plates and other thermal solutions for power electronics in Booth No. 1738 at APEC 2018, the world’s premier event for applied power electronics, being held in the Henry B. Gonzalez Convention Center in San Antonio, Texas from March 4-8.

APEC 2018

ATS will have a video demonstration and samples of its newly-released liquid cold plates, which boast an innovative, internal fin array with an optimized aspect ratio that provides 30 percent better performance than other commercially-available cold plates currently on the market.

ATS cold plates are the perfect thermal solution for power electronics, such as IGBT, wide-bandgap, and more.

“Even as power supplies and power ICs increase in efficiency, challenging thermal issues remain,” said Steve Nolan, ATS Vice-President of Sales and Business Development. “There is a demand for more power across the industry and ATS is committed to supporting the electronics industry with the right solutions in the varied component and end-markets on the market today, whether its cooling for IBGT, emerging wide-bandgap, power bricks, CPUs, BGAs or more.”

He added, “APEC provides us the opportunity to share our solutions with these manufacturers, as well as discuss how we can help with any of their future needs.”

ATS cold plates are the perfect solution for cooling high-powered electronics, such as IGBT modules. (Advanced Thermal Solutions, Inc.)

Cold plates are part of an array of liquid cooling solutions that ATS has to offer, including heat exchangers with the industry’s highest density fins to optimize heat transfer and a line of chillers for precise control of coolant temperature.

In addition to its liquid cooling solutions for power electronics, ATS will also showcase its popular Power Brick heat sinks, which are based on the patented maxiFLOW™ design and specially designed for cooling 1/8, 1/4, 1/2, and full-brick DC/DC power converters. ATS has added a straight-fin option to its line of power brick heat sinks to give power engineers an option with a smaller footprint for crowded boards.

ATS has straight-fin heat sinks as part of its Power Brick line to give additional cooling options for power engineers. (Advanced Thermal Solutions, Inc.)

ATS will also display samples of its vast array of high-performance flat and round heat pipes that are perfect for spreading heat away from high-powered components, particularly in boards that have high component-density and little space for other cooling methods.

Visit ATS at Booth No. 1738 at APEC 2018 and join Steve Nolan and Product Engineering Manager Greg Wong to learn more about the numerous thermal solutions that ATS has designed for the power electronics industry.

Find more information about ATS liquid cold plates, Power Brick heat sinks, or ATS consulting and design services, at https://www.qats.com/ or contact ats-hq@qats.com.