In this article, Qpedia will explore some innovative thermal management products that have recently hit the market. These new thermal products encompass a variety of thermal management applications from CPU coolers to thermal interface materials (TIM) to sensors and test instruments to advanced materials and concepts.
Wireless Temperature Sensor for Data Centers
The EkkoSensor Wireless Temperature and Humidity Sensor from U.K.-based EkkoSense is the first IoT-enabled wireless sensor for data centers. Its low cost enables its use in large quantities to provide true real-time thermal management of data centers and other critical facilities.
The sensor features a local display of the measured temperature and relative humidity values, with additional screens that can be cycled through to show temperature profiles over the last hour, 24 hours and seven days for quick thermal assessment on-site. Wireless EkkoSensors are entirely self-contained and battery-powered for simpler installation.
The sensors provide a direct sensor-to-hub linkage to keep the radio network simple and deliver predictable levels of battery life and performance. All temperature and humidity data is encrypted with 128-bit AES encryption before transmission to an EkkoHub wireless data receiver for forwarding to EkkoSense’s cloud-based EkkoSoft 3D visualization and analysis software.
Non-Silicone TIMs for LED Cooling
Electrolube has introduced non-silicone TIMs for use in LED cooling in response to silicone-related issues with long term reliability, contamination and availability. Heat can substantially impacts the lifetime, cost and performance of an LED luminaire. Without suitable thermal management, a luminaire will be thermally inefficient, have a reduced operating life and high maintenance costs.
Electrolube’s non-silicone thermal pastes include HTC (Heat Transfer Compound) and HTCP (Heat Transfer Compound Plus), which avoid silicone migration onto electrical contacts. Potential issues with silicone migration include high contact resistance, arcing, soldering problems and mechanical wear.
Electrolube’s X range of non-silicone thermal products features the low viscosity HTCX, for ease of use, and HTCPX for gap filling applications. These ‘Xtra’ versions of HTC and HTCP provide increased thermal conductivity, lower oil-bleed and lower evaporation weight loss, making them comparable or better than some silicone-based materials.
Heat Insulating Sheets Have Air-Like Conductivity
Panasonic, a worldwide leader in thermal protection products has introduced NASBIS insulating sheets. NASBIS stands for Nano Silica Balloon Insulator Sheet. This new addition to Panasonic’s line of thermal management solutions is a thin, flexible Nano-Silica heat insulation material composed of silica aerogel and polyester fiber that has high thermal isolative properties.
The thermal conductivity of NASBIS is comparable to that of air, making it a very attractive material for heat insulation. NASBIS sheets protect thermally weak products from heat and work to maintain a uniform temperature throughout a device. When combined in a stack with Panasonic’s pyrolytic graphite sheet or PGS, NASBIS insulating sheets enable the control of heat direction.
The proprietary composite material provides greater heat insulating performance. Applications include wearable devices, LED modules and drivers, micro inverters, IGBT modules, radio devices, notebook and tablet PCs, satellites and cameras.
High Performance CPU Cooler for Gaming PCs
The HEX 2.0 CPU cooler from Phononic offers superb performance in a compact design that allows users to push their processor up to 140 watts TDP (thermal design power) and beyond. The cooler’s innovative design combines a small form factor measuring just 125 x 112 x 95 millimeters, unique styling via a swappable 92-millimeter fan, and customizable LED illumination.
Users can select cooling profiles, change LED colors and keep up-to-date with the latest firmware through the HEX 2.0 software application dashboard. The HEX 2.0 offers an alternative for high performance cooling without going to a much larger heat sink/fan or a water-based solution.
The HEX 2.0 has an integrated electronic control board and utilizes an active and passive cooling design to deliver high performance cooling only when necessary, minimizing the power and fan noise. The HEX 2.0 requires zero power consumption when the CPU is under low stress, up to a peak power of 35 Watts when the CPU is under stress or in overclocked mode.
High Performance, Low Compression Gap Filler
The new GAP PAD HC 5.0 for Henkel is designed to manage the heat generated by today’s reduced form factor, high power density components. A soft and compliant gap filling material, GAP PAD HC 5.0 has a thermal conductivity of 5.0 W/mK and delivers outstanding thermal performance with very low compression stress.
The low modulus and unique filler package is ideal for applications that require minimal component or board stress during assembly, yet demand high heat transfer across the interface with very low thermal resistance. GAP PAD HC 5.0 allows for superb interfacing and wet out, even to rough surfaces and topographies, which ensures uniform material coverage across the component and heat sink for maximum performance.
Compared to previous-generation materials, GAP PAD HC 5.0 offers better handling, an enhanced dielectric constant, improved volume resistivity and better thermal impedance performance. Manufactured with a natural tack on both sides, GAP PAD HC 5.0 contains no thermally-impeding adhesive layers and is available in a range of thickness from 0.508 mm up to 3.175 mm.
Top Mount Enclosure Air Conditioner
Thermal Edge now provides the Top Mount series of enclosure air conditioners. Mounting an air conditioner on the sides or doors of an electrical enclosure is not always possible due to spacing constraints.
To accommodate these applications, Thermal Edge has added a series of Top Mount enclosure air conditioners in a variety of capacities and voltages that provides the same unique features as their side mounted models, including an active condensate evaporation system, digital controller, and a thermal expansion valve to maintain cooling capacity over a broad ambient temperature range.
The Top Mount models also offer a unique option that allows engineers to enhance the airflow inside the cabinet by adjusting the distance between the cold air outlet and the warm air intake. The Top Mount models are designed to be filter free (filters optional) and are available with 6,000 and 8,000 BTU/H performance. The air conditioners are available in NEMA Types 12, 4 and 4X.
Read more articles from the Qpedia archive at https://www.qats.com/Qpedia-Thermal-eMagazine.