Tag Archives: heat pipes

In the ATS Labs – Where Thermal Solutions Advance to Meet Industry Demands

Thermal management innovations need to match the rapid pace at which the electronics industry is advancing. As consumers demand new and more powerful devices or greater amounts of information at faster speeds, cooling solutions of the past will not be enough. Today’s cooling solutions must be smaller, lighter, and offer higher performance, but also need to be cost-effective, meet demanding project specifications, and be reliable for many years.

Advanced Thermal Solutions, Inc. (ATS) understands the importance of creating cutting-edge thermal solutions for its customers and has geared its thermal design capability and its research and development to match the innovations taking place in electronics design.

ATS Labs

An ATS engineer assembles a rig for testing cold plates in one of ATS’ six state-of-the-art labs. (Advanced Thermal Solutions, Inc.)

To meet the need for innovative solutions, ATS engineers are hard at work in the company’s six state-of-the-art laboratories at the ATS headquarters, located in Norwood, Mass. (south of Boston). Thermal issues of all kinds are recognized, broken down, and resolved and cooling solutions are designed, simulated, prototyped, and rigorously tested in these research-grade facilities.

When someone thinks of a research lab, the initial picture is scientists in white coats working for major corporations, such as IBM, Microsoft, or Google, but the development of new ideas is an essential tool for any company in the technology field. Working with empirical tests in a lab environment pushes concepts from the white board or the computer screen to reality. There comes a time when engineers need to produce tangible data to ensure that a design works as planned.

ATS thermal engineers are no different. They use state-of-the-art instruments and software in each of the six labs to conduct a long list of characterization, quality-assurance, and validation tests. In addition to finding custom cooling solutions for customers, ATS engineers produce thermal management products for commercial uses, including a variety of next generation heat sink, heat pipe, vapor chamber, and liquid cooling designs.

ATS Labs

Engineers test ATS instruments using a wind tunnel and sensors in the Characterization Lab. (Advanced Thermal Solutions, Inc.)

Among the most common tests performed in the ATS labs are:

• Measurements of air velocity, direction, pressure and temperature;
• Characterization of heat sink designs, fans and cold plates
• Flow visualization of liquid and air flow
• Image visualization characterization using infrared and liquid crystal thermography.

Many of the instruments that these tests are performed on were designed and fabricated by ATS. That includes open-loop, closed-loop, and bench-top wind tunnels; the award-winning iQ-200™, which measures air temperature, velocity, and pressure with one instrument; and the thermVIEW™ liquid crystal thermography system. Engineers also use specially-designed sensors, such as the ATS Candlestick Sensor, to get the most accurate analysis possible.

Smoke flow visualization tests run in ATS wind tunnels demonstrate how air flows through a system. (Advanced Thermal Solutions, Inc.)

Heat pipes and vapor chambers are increasingly common cooling solutions, particularly for mobile devices and other consumer electronics, and ATS engineers are working to expand the company’s offerings for these solutions and to develop next generation technology that optimizes the thermal performance of these products. This research involves advanced materials, new fabrication methods, performance testing, and innovative designs that are ready for mass production.

ATS engineer Vineet Barot sets up a thermal imaging camera for temperature mapping studies in the lab. (Advanced Thermal Solutions. Inc.)

ATS has also developed products to meet the growing demand across the electronics industry for liquid cooling systems. From new designs for recirculating and immersion chillers to multi-channel cold plates to tube-to-fin heat exchangers, ATS is continuing to expand its line of liquid cooling solutions to maximize the transfer of heat from liquid to air and researching new manufacturing methods, advanced materials, and other methods of enhancing the technology.

As liquid cooling technology has grown, ATS has met this demand with new instruments and lab capabilities, such as the iFLOW-200™, which measures a cold plate’s thermal and hydraulic characteristics, and full liquid loops to test ATS products under real-world conditions.

ATS Labs

ATS engineer Reza Azizian (right) works with intern Vladislav Blyakhman on a liquid cooling loop in the lab. (Advanced Thermal Solutions, Inc.)

The labs at ATS are up to even the toughest electronics cooling challenges that the company’s global customers present. Thanks to its extensive lab facilities, ATS has provided thousands of satisfied customers with the state-of-the-art thermal solutions that they demand.

For more information about Advanced Thermal Solutions, Inc. (ATS) thermal management consulting and design services, visit www.qats.com/consulting or contact ATS at 781.769.2800 or ats-hq@qats.com.

What is Geothermal Cooling and Heating Technology and How Does it Work

By Norman Quesnel
Senior Member of Marketing Staff
Advanced Thermal Solutions, Inc. (ATS)

If you cross-sectioned the Earth, it would show a multi-layered structure with a solid iron core spinning in a sea of liquid iron and sulfur. You would also find great quantities of flowing heat starting at the very center and moving outward.

The flow of heat from Earth’s interior to the surface is estimated at 47 terawatts, i.e. 47 trillion watts, and comes from two main sources in roughly equal amounts: the radiogenic heat produced by the radioactive decay of isotopes in the mantle and crust and the primordial heat left over from the formation of the Earth 4-1/2 billion years ago.

In a recent study, scientists estimated the temperature of the center of the Earth at 6,000°C (10,800°F) – about as hot as the surface of the sun. [2]

Geothermal Cooling

Fig. 1. Earth’s Outermost Layer, the Crust, and Comprises Just 1% of Our Planet’s Mass. [2]

In fact, more than 99% of the inner Earth is hotter than 1,000°C (1,800°F). Unlike the sun, the Earth is much cooler at its outer crust and on its outside surface. But even at cooler temperatures, the shallow depths of the Earth’s crust provide a geothermal resource for both heating and cooling structures built above the ground.

By drilling deeper down, but still within the crust, much higher temperatures can be harnessed to help generate power that can in turn provide industrial and even community-wide levels of heating and cooling. High-temperature geothermal heat has tremendous potential because it represents an inexhaustible, and virtually emissions-free, energy source. [3]

Geothermal Cooling

Fig. 2. Simple Diagram of Near Surface Heating and Cooling Geothermal System. [4]

Near Surface Heating and Cooling Systems

The ground absorbs nearly half of the solar energy the planet receives. As a result, the Earth remains at a constant, moderate temperature just below its surface year-round. However, air temperature varies greatly from summer to winter, making air source (traditional) heating and cooling least efficient when you need it the most. [5]

Geothermal heat pumps take advantage of the moderate temperatures typically found at shallow depths to boost efficiency and reduce the operational costs of architectural heating and cooling systems. Unlike conventional heating and air conditioning systems, which use the outside air to absorb and release heat, geothermal systems use heat pumps to transfer heat from below the surface.

Geothermal Cooling

Fig. 3. Four Basic Types of Geothermal Heat Pump System Shown in a US Department of Energy Illustration. Open Loop Systems Can Use Either a Man-made or Natural Water Reservoir. [6]

The pumps connect to closed loops of plastic pipes buried either horizontally or vertically in the ground below the frost line (about 100-200 meters), where the temperature is consistently between 40-80°F depending on location. Called ground loops, the underground pipes are filled with water and sealed tight except where they are connected to the geothermal heating and cooling system inside the building.

In winter, water running through the loops will absorb heat from the ground and pipe it into the home, while the system will run in the opposite direction to keep things cool during the scorching summer months. The pipes are connected to a heat pump and water heater inside the house and users can control the indoor climate through a smart thermostat.

There are four basic configurations for geothermal heat pump ground loops. Three of them are closed-loop systems that use a self-contained water and an anti-freeze solution. The open-loop system uses ground water or water from a well. [6]

Geothermal Cooling

Fig 4. Geothermal Pumps Can Efficiently Heat and Cool Homes and Commercial Buildings. [7]

Newer geothermal systems can be installed at shallower depths, less than 50 feet. Even at these levels, the ground can provide a heat source in colder weather and serve as a cooling heat sink when surface temperatures are hot. [8]

There are several providers of geothermal heating and cooling systems. Google’s parent company, Alphabet, is among them with its newly created startup, Dandelion. Originally conceived at X, Alphabet’s innovation lab, Dandelion is now an independent company offering geothermal heating and cooling systems to homeowners, starting in the northeastern U.S. [9]

To put in the ground loops, Dandelion uses its “clean drilling technology” to dig a few small holes in the yard, each only a few inches wide. Then a technician will install the other components inside the house, and the system should be up and running in two or three days. After that, the only regular maintenance is an air filter change every six to 12 months.

Deeper Down Geothermal Systems

The Kola borehole, on Russia’s Kola Peninsula is the deepest mankind has ever drilled into the Earth’s crust. After nearly 15 years of boring, the hole was 12,262 meters (40,230 feet) – over 12 kilometers or 7.6 miles deep. At that depth, the temperature was 185°C (356°F). [10]

Geothermal Cooling

Fig. 5. Very Hot, Deep Underground Thermal Energy Can Convert Water to Steam to Power Turbine Generators in Power Plants. [11]

Even at half that depth, there can be much more heat than a near-surface geothermal system can access. The Norwegian company Rock Energy wants to be an international leader in high power geothermal heat and energy. A pilot plant has been planned for Oslo that will collect heat from 5,500 meters deep. The high temperatures from this depth can heat water to 90-95°C (194-203°F) and can be used in district heating plants. [12]

Rock Energy is planning to drill two wells, an injection well where cold water is pumped down, and a production well where hot water flows back up. Between these will be so-called radiator leads that connect the wells. The water is then exchanged with water in a district heating plant managed by the Norwegian power company Hafslund. [13]

Geothermal Cooling

Figure 6. Water is Superheated by Deeply Located Hot Rocks and Pumped to the Surface Where It Converts a Separate Liquid to Turbine-Driving Steam. [14]

A hot dry rock system potentially allows geothermal energy to be captured from hot rocks, 3-5 km (1.8-3.1 miles) underground. In operation, cold water is pumped at high pressure down into the very high-temperature, fractured hot rock. The water becomes superheated as it passes through the rock on its way to the extraction boreholes.

In Figure 6, the diagram of a hot dry rock system shows hot water emerging from the borehole and directed through a heat exchanger. After giving up its heat, the cooled water is recycled back down the injection borehole in the hot rock bed. The working fluid, a low boiling point liquid, circulating through the secondary circuit of the heat exchanger is vaporized by the heat extracted from the well water and used to drive the power plant’s turbines. [14]

At both shallow depths and miles down, the Earth offers thermal energy that can harnessed for heating, cooling and power generation. Compared to most other processes, geothermal energy is cleaner, continuous and, as technology advances, a low cost alternative to fossil fuels or to solar and wind-powered systems.

References
1. https://en.wikipedia.org/wiki/Earth%27s_internal_heat_budget
2. https://www.geokraftwerke.de/en/geokraftwerke/geothermal-energy/geothermics.html
3. https://www.sciencedaily.com/releases/2015/10/151023094414.htm
4. http://www.coolingzone.com/index.php?read=1279
5. http://www.climatemaster.com/residential/how-geothermal-works/
6. https://www.pinterest.com/pin/524387950340721445/
7. https://www.geoexchange.org/geothermal-101/
8. https://en.wikipedia.org/wiki/Geothermal_heat_pump
9. https://dandelionenergy.com/
10. https://en.wikipedia.org/wiki/Kola_Superdeep_Borehole
11. http://photonicswiki.org/index.php?title=Survey_of_Renewables
12. https://www.qats.com/cms/2017/04/25/industry-developments-district-cooling-systems/
13. https://www.sintef.no/en/latest-news/energy-underfoot-/
14. http://www.mpoweruk.com/geothermal_energy.htm

For more information about Advanced Thermal Solutions, Inc. (ATS) thermal management consulting and design services, visit www.qats.com/consulting or contact ATS at 781.769.2800 or ats-hq@qats.com.

Applications of Vapor Chambers in Thermal Management of Electronics

The use of vapor chambers in the thermal management of electronics has grown exponentially since Advanced Thermal Solutions, Inc. (ATS) first wrote seven years ago about their ability to spread heat uniformly across the base of a heat sink, reducing the spreading resistance and enhancing the heat sink’s heat transfer capabilities when applied to high-powered components.

In a two-part series published originally in 2010 and based on an article from Qpedia Thermal eMagazine entitled, “Vapor Chambers and Their Use in Thermal Management,” it was explained that “a vapor chamber (VC) is basically a flat heat pipe that can be part of the base of a heat sink. It is vacuumed and then injected with just enough liquid (e.g. water) to wet the wick.” [1]

Similar to heat pipes, “The heat source causes the liquid to vaporize on the evaporator side. The resulting pressure increase in this area forces the vapor into the condenser side, which is the base of the heat sink. Here, the vapor transfers the heat to the heat sink, and it then condenses back to liquid. The liquid is pumped back to the base through the capillary action of the wick structure.”

In Fig. 1, two heat sinks are shown. One has a solid base and the other has a vapor chamber in its base and it is clear from the temperature distribution that the vapor chamber spreads out the heat across the base and distributes heat to a larger portion of the heat sink.

As the original article explained, “The very high equivalent thermal conductivity of the vapor chamber has spread the heat uniformly, leading to more efficiency from the heat sink.”

Vapor Chambers

Figure 1. Schematic View of Heat Sinks with (a) Solid Base and (b) Vapor Chamber Base. [1]

The second article runs through some of the equations that define the effective thermal conductivity of the wicking structure inside the vapor chamber and the impact that changing the wick material can have on its efficiency.

“This article shows that while a vapor chamber presents exciting technology, some calculations should be made to justify its use,” it continued. “In some situations, a solid copper block might provide better thermal performance than a vapor chamber. To use a vapor chamber instead of solid copper must be justified, for example, to reduce weight.

Another issue with vapor chambers presented by the article was that “some vapor chambers have a power limit of 500 watts. Exceeding this value might cause a dry out, as with a heat pipe, and could increase the vapor temperature and the pressure. The increase in internal pressure can deform the VC surfaces, or cause leakage from the welded joints.”

The study of vapor chambers has developed in the past seven years and, although some of the same issues remain, they are now thinner and lighter than ever and engineers are finding many new ways of incorporating them into cooling systems. Vapor chambers are now frequently used in applications ranging from hard drive disk cooling, PC cooling (not just for gamers and overclockers, but also for office computers), graphic card cooling, server cooling, high heat flux chips (IGBT and MOSFET), LED, and in consumer products (particularly mobile devices such as cell phones and tablets).

In addition to the benefits explained above, vapor chambers are critical in applications where height is limited, which is an increasing problem in today’s era of miniaturization, and where power densities are high. Vapor chambers are also important in applications where there are hotspots, where weight is a concern, and where there is a high ambient temperature or low airflow.

Hard Drive Disk Cooling

Several manufacturers in the hard drive market have turned to vapor chambers because of increases in spindle speed. In the past, many manufacturers and designers limited the thermal management of hard drives to using the aluminum case as a heat sink to dissipate the excess heat from the device, but as drives began working at 7,200 RPM and higher another option was required to ensure the reliability and longevity of the drive. [2]

A 2013 study that was published in International Communications in Heat and Mass Transfer explored the use of vapor chambers to cool hard drives in personal computers. The researchers found that adding vapor chambers to the cooling system could reduce the hard drive temperature by as much as 15.21%. [3]

Gaming, Overclocking, Personal Computing

The gaming and overclocking community has turned towards liquid cooling in recent years, as evidenced by a recent survey from KitGuru that showed 51% of its readers had already or would shortly be using liquid cooling for their personal computers. [4] While there is a trend in that direction, just under half (49%) of the respondents were also sticking with convection cooling options and many companies are incorporating vapor chamber technology in elaborate cooling devices (many with fans and heat pipes) for the PC market.

Cooler Master has introduced the V8 GTS CPU Air Cooler, which strongly resembles a car engine and has a horizontal vapor chamber and eight heat pipes. [5] The vapor chamber spreads the heat evenly from hotspots in the CPU and the heat pipes draw that heat into the tower’s heat sink.

Vapor Chambers

The Cooler Master GTS V8 has a distinct car engine look and uses vapor chambers, heat pipes, and heat sinks to cool PCs. (Cooler Master/YouTube)

ID Cooling has introduced several products that boast vapor chamber technology, including the HUNTER, and FI (which stands for Finland) Series CPU coolers. [6] Even gaming systems have gotten into the act with the recently announced, high-powered Xbox One Scorpio expected to include a vapor chamber array as part of its thermal management. [7] Microsoft’s announcement that it was using vapor chambers in Project Scorpio was not surprising because of the technology’s ability to fit into the tight confines of the gaming system.

Microsoft’s Project Scorpio introduced a new, higher-powered gaming system that required an array of vapor chambers to keep it cool. (Microsoft)

Also, the increasing capabilities and power of next-generation graphics cards has led to a trend in the industry to use vapor chambers as part of a package to cool these components. Nvidia is one of the biggest names in graphic cards and for both the Titan X and the GeForce GTX 1080 (each launched in 2016) vapor chamber are used with a blower to dissipate the increased power of the devices. [8]

It is not only the gaming community that is benefiting from vapor chamber cooling. Hewlett Packard (HP) has also explored using vapor chambers for multiple purposes. HP released a white paper last year about using 3-D vapor chambers in its Z Coolers to enhance their thermal efficiency as well as reduce the acoustic impact of the fans. [9] Also last year, HPE Labs released a study of vapor chambers for cooling multiple chip modules dissipating 250 W and operating temperatures up to 45°C and found that “VC (vapor chamber) performs better for: high power, power density, off center or asymmetric heat sources.” [10]

Server Cooling

Much like in graphic cards or gaming systems, vapor chambers are increasingly used in server cooling applications because their size and weight allows them to fit into tight spaces, particularly in applications with high component density. For example, Rugged has released an M120 1-U server rack that includes vapor chambers to spread the heat evenly and high-speed fans to pull the heat out of the system. [11]

A study by Aavid Thermacore from the 2007 ASME InterPACK Conference explained that in blade processors that need to dissipate 100-300 W with heat sinks lower than 30 mm, vapor chambers could be used as the base of the heat sink to improve effective spreading and improve performance by 25-30%. [12] Radian’s Intel Skylake heat sink that is intended for server chips installed in a 1-U chassis put this into practice with a vapor chamber in its base that enhances the effective thermal conductivity of the stamped aluminum fins. [13]

Radian’s Intel Skylake heat sink uses a vapor chamber in the base to evenly spread the heat and improve the heat transfer through the fins of the heat sink. (Radian)

For more on the topic of vapor chambers as heat sink bases, read https://www.qats.com/cms/2017/07/26/vapor-chambers-solid-material-base-high-power-devices.

LED Cooling

A more recent development in the use of vapor chambers is their inclusion in LED packages. A 2016 study from the 37th International Electronic Manufacturing Technology Conference outlined the use of vapor chambers along with finned heat sinks in the thermal management of LED to enhance the thermal performance and provide a “more economical” process than making the heat sink larger or using more expensive materials. [14]

Advanced Cooling Technologies (ACT) also released a case study about cooling high-powered LED applications, such as ultraviolet (UV) cutting devices, which said, “Vapor Chambers are an important tool in LED thermal management, since they act as flux transformers, spreading the high input heat flux over the entire surface of the vapor chamber. This allows the heat to be removed from the vapor chamber by conventional cooling methods.” [15] ACT added that it developed C.T.E matched vapor chambers that allow for direct bonding with the LED and “dissipate heat fluxes as high as 700 W/cm2 and 2kW overall.”

Vapor chambers are also being used in automotive LED applications to prevent failures by spreading the heat quickly from the source. A study from the 2011 International Heat Pipe Symposium found that a vapor chamber with distilled water dropped the LED temperature from 112.7°C to 80.7°C, reduced thermal resistance by 56%, and reached steady state faster than conventional systems. [16]

Mobile Devices

The most obvious market for vapor chambers is mobile devices. Last fall, the news was filled with stories about Samsung cell phone batteries reaching thermal runaway and airplane passengers being forced to turn off the phones for concern about a midair fire. With their thin design and low weight, vapor chambers can be used to spread the heat quickly from batteries or high-powered processors in phones, laptops, tablets, etc. and reduce the risk for catastrophic failures.

A 2016 study from the International Journal of Heat and Mass Transfer described vapor chambers being used to reduce hotspots to improve the comfort of users, which is a problem unique to mobile devices. [17] The researchers proposed a “biporous condenser-side wick design” that “facilitates a thicker vapor core, and thereby reduces the condenser surface peak-to-mean temperature difference by 37% relative to a monolithic wick structure.”

A recent story from EE Times noted that the combined shipments of mobile devices was expected to decline in 2017, marking the third straight year of reduced shipments [18], but with companies expending resources to develop 5G technology there is still a need for superior cooling options moving forward and vapor chambers appear to be a perfect fit in mobile thermal management systems.

References
[1] “Vapor Chambers in Thermal Management”, Qpedia Thermal eMagazine, Sept. 2007.
[2] http://www.pcguide.com/ref/hdd/op/packCooling-c.html
[3] P. Naphon. S. Wongwises, and S. Wiriyasart, “Application of two-phase vapor chamber technique for hard disk drive cooling of PCs,” International Communications in Heat and Mass Transfer, January 2013.
[4] https://www.kitguru.net/components/cooling/andrzej/majority-of-kitguru-readers-now-planning-on-liquid-cooling/
[5] http://www.coolermaster.com/cooling/cpu-air-cooler/v8-gts/
[6] http://www.idcooling.com/Product/series/category_parent/25/name/AIR%20COOLING
[7] https://www.youtube.com/watch?v=RE2hNrq1Zxs
[8] http://www.pcworld.com/article/3102027/components-graphics/nvidias-monstrous-new-titan-x-graphics-card-stomps-onto-the-scene-powered-by-pascal.html and https://www.nvidia.com/en-us/geforce/products/10series/geforce-gtx-1080/
[9] http://www8.hp.com/h20195/v2/getpdf.aspx/4AA6-1205ENW.pdf?ver=2.0
[10] https://www.labs.hpe.com/techreports/2016/HPE-2016-85.pdf
[11] http://www.coresystemsusa.com/filedata/prod/443m120_1u_rugged_rackmount_computer.pdf
[12] http://proceedings.asmedigitalcollection.asme.org/proceeding.aspx?articleid=1595384
[13] https://www.radianheatsinks.com/intel-skylake-heatsink/
[14] K.S. Ong, C.F. Tan, K.C. Lai, K.H. Tan, and R. Singh, “Thermal management of LED with vapor chamber and thermoelectric cooling,” 37th International Electronic Manufacturing Technology Conference, 2016.
[15] https://www.1-act.com/led-thermal-management-case-study-cte-matched-vapor-chamber/
[16] Ji Won Yeo, Hyun Jik Lee, Soo Jung Ha, et al., “Development of Cooling System of LED Headlamp for Vehicle Using Vapor Chamber Type Heat Pipe,” 10th International Heat Pipe Symposium, November 2011.
[17] GauravPatankar, Justin A.Weibel, and Suresh V.Garimella, “Patterning the condenser-side wick in ultra-thin vapor chamber heat spreaders to improve skin temperature uniformity of mobile devices,” International Journal of Heat and Mass Transfer, October 2016.

For more information about Advanced Thermal Solutions, Inc. (ATS) thermal management consulting and design services, visit www.qats.com or contact ATS at 781.769.2800 or ats-hq@qats.com.

Vapor Chambers and Solid Material as a Base for High Power Devices

(This article was featured in an issue of Qpedia Thermal e-Magazine, an online publication dedicated to the thermal management of electronics. To get the current issue or to look through the archives, visit http://www.qats.com/Qpedia-Thermal-eMagazine.)

Microelectronics components are experiencing ever-growing power dissipation and heat fluxes. This is due to dramatic gains in their performance and functionality. To cope with the heat issues of tomorrow’s technology, more efficient cooling systems will be required. It should be noted that as computer systems continue to compact, the components adjacent to the processors are experiencing an increase in power dissipation.

As a result, ambient temperatures local to the microprocessor heat sinks have increased, and temperatures in excess of 45°C have been reported. [1] Improvements are needed in all aspects of the cooling solution design, i.e., packaging, thermal interfaces, and air-cooled heat sinks. The article discusses the use of vapor chamber technology as a heat spreader to help cool high-power devices.

Introduction

Spreading resistances exist whenever heat flows from one region to another in a different cross-sectional area. For example, with high performance devices, spreading resistance occurs in the base plate when a heat source with a smaller footprint is mounted on a heat sink with a larger base plate area. The result is a higher temperature where the heat source is placed.

The impact of spreading resistance on a heat sink’s performance must not be ignored in the design process. One way to reduce this added resistance is to use highly conductive material, such as copper, instead of aluminum. Other solutions include using heat pipes, vapor chambers, liquid cooling, micro thermoelectric cooling, and the recently developed forced thermal spreader from Advanced Thermal Solutions, Inc. (ATS).

In the case of vapor chambers (VC), the general perception has been that phase change technologies provide more effective thermal conductivity than solid metals. The spreading resistance of the base for both solid metal and conventional VC heat spreaders is defined as:

Vapor Chamber (1)

Where Ts [°C] is the temperature of the hottest point on the base, and Tb,top [°C] is the average temperature of the base top surface. [1]

Vapor Chambers

Figure 1. Schematics of a) Heat Pipe and b) Vapor Chamber [2], with c) Photo of Vapor Chambers. [3]

Table 1 shows the thermal conductivity of different materials in spreading the heat at the base. Heat pipes and VC emerged as the most promising technologies and cost effective thermal solutions due to their excellent uniform heat transfer capability, high efficiency, and structural simplicity. Their many advantages compared to other thermal spreading devices are that they have simple structures, no moving parts, allow the use of larger heat sinks, and do not use electricity. This article’s emphasis is on vapor chambers.

Is a heat pipe considered a material? Should we include vapor chambers in this table?

The principle of operation for VC is similar to that of heat pipes. Both are heat spreading devices with highly effective thermal conductivity due to phase change phenomena. A VC is basically a flat heat pipe that can be part of the base of a heat sink. Figure 1 shows the schematics of a typical heat pipe and VC. [2]

A VC is a vacuum vessel with a wick structure lining its inside walls. The wick is saturated with a working fluid. The choice of this fluid is based on the operating temperature of the application. In a CPU application, operating temperatures are normally in the range of 50-100°C. At this temperature range water is the best working fluid. [3]

As heat is applied, the fluid at that location immediately vaporizes and the vapor rushes to fill the vacuum. Wherever the vapor comes into contact with a cooler wall surface it condenses, releasing its latent heat of vaporization. The condensed fluid returns to the heat source via capillary action, ready to be vaporized again and repeat the cycle.

The capillary action of the wick enables the VC to work in any orientation, though its optimum performance is orientation dependent. The pressure drop in the vapor and the liquid determines the capillary limit or the maximum heat carrying capacity of the heat pipe. [4] For electronics applications, a combination of water and sintered copper powder is used. [2]

A VC, as shown in Fig.1 (b), is different from a heat pipe in that the condenser covers the entire top surface of the structure. In a VC, heat transfers in two directions and is planar. In a heat pipe, heat transmission is in one direction and linear.

The VC has a higher heat transfer rate and lower thermal resistance. In the two-phase VC device, the rates of evaporation, condensation, and fluid transport are determined by the VC’s geometry and the wicks’ structural properties. These properties include porosity, pore size, permeability, specific surface area, thermal conductivity, and the surface wetability of the working fluid. [5] Thermal properties of the wick structure and the vapor space are described in the next section.

Effective Thermal Conductivity

Wick Structure

Heat must be supplied through the water-saturated wick structure, at the liquid-vapor interface, for the evaporation process to happen. With water and sintered copper powder, the water becomes a thermal barrier due to its much lower thermal conductivity compared with the copper. [2]

There are several ways to compute the effective thermal conductivity of the wick structure.

For parallel assumption:

(2)

For serial assumption:

(3)

For sintered wick structure, Maxwell gives: [2]

(4)

Chi gives: [2]

(5)

Where:

(6)

In the equations above, Kl and Ks are the thermal conductivities of water and copper, respectively, ε is the porosity of the wick, rc and rs are the contact radius (or effective capillary radius) and the particle sphere radius, respectively.

Table 2 shows a comparison of effective thermal conductivity (W/m°C) for the wick using equations 2—5. It appears that Equation 5 gives a more realistic value. This is also the typical value used in Vadakkan et al. [6]

Table 2. Effective Thermal Conductivity for the Wick Structure.

Vapor Space

Effective thermal conductivity for vapor chambers used in remote cooling applications has been derived from Prasher [4], based on the ideal gas law, and from the Clapeyron equation for incompressible laminar flow conditions.

(7)

Where Hfg is the heat of vaporization (J/Kg), P is pressure (N/m2), ρ is density (kg/m3), d is the vapor space thickness (mm), R is the gas constant per unit mass (J/K.Kg), μ is the dynamic viscosity (N.s/m2), and T is the vapor temperature (°C).

As shown in Equation 7, effective thermal conductivity is a function of thermodynamic properties and vapor space thickness. Larger vapor space thickness reduces the flow pressure drop, and thus increases the effective thermal conductivity. Note that the effective thermal conductivity is relatively low at low temperatures. This has significant implications for low heat flux applications or start-up conditions [2].

Drawbacks

There are a few drawbacks to using a VC instead of solid copper. Some VC have a power limit of 500 watts. Exceeding this temperature might cause a dry out and could increase the vapor temperature and pressure.

An increase in internal pressure can deform the VC surfaces or cause leakage from the welding joints. Other factors to be addressed include cost, availability, and in special cases, the vapor chamber’s manufacturability.

When to Use a Vapor Chamber

The early design stages are when to decide if it makes sense to use a heat pipe/VC instead of copper or other solid materials to better spread heat. To predict the minimum thermal spreading resistance for a VC, a simplified model was developed by Sauciuc et al. [1]. Their model assumes that the minimum VC spreading resistance θsp is approximately the same as the evaporator (boiling) resistance θev.

(8)

Here, hev [W/m2K] is the boiling heat transfer coefficient and Aev [m2] is the area of the evaporator (heat input area). It is also assumed that the boiling regime inside the VC is nucleate pool boiling. This is a conservative assumption, since in reality the spreading resistance in a VC is greater than just the boiling resistance. If the spreading resistance calculated from this simplified model is higher than that of a solid copper base, then a VC should not be used. [1]

The boiling model is based on Rohsenow’s equation for nucleate pool boiling on a metal surface, and is given by: [7]

(9)

Where μf is the dynamic viscosity of the liquid, hfg is the latent heat, g(ρf – ρg) is the body force arising from the liquid-vapor density difference, σ is the surface tension, cp,f is the specific heat of liquid, Cs,f and n are constants that depend on the solid-liquid combination, Prf is the liquid’s Prandtl number, and ΔT = [Ts – Tsat], which is the difference between the surface and saturation temperatures.

It can be seen that the heat flux is mainly a function of fluid properties, surface properties, and the fluid/material combination, and that superheat is required for boiling. For electronics cooling applications, it is widely accepted that water/copper is the optimum combination for VC fabrication [1].

The evaporator heat transfer coefficient definition is:

(10)

The ratio of phase change spreading over copper spreading can be estimated for the base of conventional rectangular heat sinks using Rohensaw’s equation and conventional modeling tools, Figure 2 from [1] shows the relationship of this ratio versus base thickness (solid metal heat sink only) for different footprint sizes. The heat input area is kept constant for this plot. This figure shows that for spreading resistance ratios greater than 1.0, the ratio decreases with increasing condenser size.

This implies that the VC type base is better situated for larger condenser sizes. The figure also indicates that ratio 1.0 occurs at greater base thickness for larger condensers. For example, with a 200×200 mm footprint, a VC would outperform a corresponding copper base heat sink (with a thickness of 10 mm or less). However, with a 50×50 mm footprint the sink’s base thickness would have to be less than about 2.5 mm for the VC to make the same claim. [1]

Figure 2 also shows that there is a “worse case point” when comparing the thermal performance of a VC and a solid copper base heat sink. This is identified by the maximum in the curve for the 50×50 mm footprint at a base thickness of 10 mm. At this point the spreading resistance ratio is at its largest value, which indicates the worst performance for the VC (when compared with the corresponding solid copper base). In general, there will be a maximum base thickness (dependent on heat source size and footprint) in considering a VC base.

Unless weight is a major concern, with a base thickness above this maximum, a VC base should not be considered. Conversely, for a heat sink base thickness below this maximum, a VC base is a viable option.

Figure 2: Ratio of Phase Change Resistance (Rohensaw’s Equation) Versus Solid Metal Resistance. [1]

Summary

Although a VC enhances heat spreading through high effective thermal conductivity, some modeling needs to be considered early in the design stage. Because a VC is a liquid filled device, cautions need to be exercised in its deployment in electronics. The dry out or loss of liquid due to poor manufacturing will render the VC as a hollow plate, thus adversely impacting device thermal performance.

In some situations as shown earlier, a solid copper base might provide better spreading of heat without the potential pitfalls of a VC.

References:
1. Sauciuc, I. Chrysler, G., Mahajan, Ravi, and Prasher, Ravi, “Spreading in the Heat Sink Base: Phase Change Systems or Solid Metals?”, IEEE Transactions on Components and Packaging Technologies, December 2002, Vol. 25, No. 4.
2. Wei, X., Sikka, K., Modeling of Vapor Chamber as Heat Spreading Devices, 10th Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronics Systems, 2006.
3. Wuttijumnong, V., Nguyen, T., Mochizuki, M., Mashiko, K., Saito, Y., and Nguyen, T., Overview Latest Technologies Using Heat Pipe and Vapor Xhamber for Cooling of High Heat Generation Notebook Computer, Twentieth Annual IEEE Semiconductor Thermal Measurement and Management Symposium, 2004.
4. Prasher, R, A Simplified Conduction Based Modeling Scheme for Design Sensitivity Study of Thermal Solution Utilizing Heat Pipe and Vapor Chamber Technology, Journal of Electronic Packaging, Transactions of the ASME, 2003, Vol. 125, No. 3.
5. Lu, M., Mok, L., Bezama, R. A Graphite Foams Based Vapor Chamber for Chip Heat Spreading, Journal of Electronic Packaging, December 2006.
6. Vadakkan, U., Chrysler, G., and Sane, S., Silicon/Water Vapor Chamber as Heat Spreaders for Microelectronic Packages, IEEE SEMI-THERM Symposium, 2005.
7. Incropera, F., Dewitt, D., Bergman, T., and Lavine, A., Introduction to Heat Transfer, Wiley, Fifth Edition, 2007.

For more information about Advanced Thermal Solutions, Inc. (ATS) thermal management consulting and design services, visit www.qats.com or contact ATS at 781.769.2800 or ats-hq@qats.com.

Case Study: Designing Air-to-Air Heat Exchanger With Heat Pipes

Advanced Thermal Solutions, Inc. (ATS) engineers were tasked by a client to design an air-to-air, aluminum heat exchanger with multiple copper heat pipes that could meet high power demands (more than 400W) with a thermal resistance requirement of 0.046°C/W and could withstand a wide range of ambient temperatures from -40°C to 60°C. Also, the separation between the heat pipe’s evaporator and condenser sections needed to be air tight.

Heat Exchanger

ATS engineers were tasked with designing an air-to-air heat exchanger with heat pipes that would fit inside an enclosure. (Advanced Thermal Solutions, Inc.)

Using analytical modeling, ATS engineers calculated the system pressure drop from the heat pipe to the fin block to the flow turn and also the thermal performance of the fins in ducted flow to determine the proper amount of fins to avoid over pressurizing the fans, while at the same time meeting the thermal resistance demands of the system. It was calculated that a maximum of 14 fins per inch could be used, while the overall size was well within the client’s requirements.

Challenge: To design an air-to-air heat exchanger that could handle high power demands of more than 400W and specific requirements on thermal resistance (0.046°C/W).

Chips/Components: Electronics junction box that requires internal air cooling.

Analysis: ATS engineers conducted analysis of the pressure drop across the system from the heat pipe to the fin block to the flow turn section, as well as analyzing the thermal performance of the entire heat exchanger. This analysis included calculating the ducted flow, heat transfer coefficient, and the fin and heat pipe resistance of the exchanger. The analysis also explored the difference between designs with copper and with aluminum fins.

Design Data: The data showed that thermal resistance and pressure drop of the CFD model were within 16% of the analytical model. The thermal performance of the heat exchanger with heat pipes was 0.044°C/W, meeting the client’s requirements.

Solution: The ATS design was optimized for four heat pipes and a suggestion was made to enhance the heat exchanger by using copper fins, rather than aluminum, because of a higher fin efficiency and lower thermal resistance.

Net Result: The customer was supplied with a production design of a heat exchanger block with heat pipes that could fit into the enclosure and provide the necessary forced convection cooling to maintain the proper temperature for the system. ATS also supplied the heat exchangers from the prototype stage to production.

For more information about Advanced Thermal Solutions, Inc. thermal management consulting and design services, visit www.qats.com or contact ATS at 781.769.2800 or ats-hq@qats.com.