Tag Archives: heat sink design

Case Study: Thermal Comparison of Copper and Aluminum Heat Sinks

Advanced Thermal Solutions, Inc. (ATS) engineers were tasked by a client to find a more cost-effective and lighter solution for a custom-designed copper heat sink that dissipated heat from four components on a PCB. ATS engineers compared the thermal performance of the copper heat sink to custom aluminum heat sinks embedded with heat pipes.

Aluminum Heat Sinks

ATS engineers worked on a comparison of a copper heat sink with an aluminum heat sink that had embedded heat pipes running underneath the components. Analysis showed that the aluminum heat sink nearly matched the thermal performance of the copper and was within the margin required by the client. (Advanced Thermal Solutions, Inc.)

Using analytical modeling and CFD simulations, the ATS engineers determined that switching to an aluminum heat sink with heat pipes that run underneath the components yielded case temperatures that were greater than 4.35%, on average, of those achieved with the copper heat sink. The largest difference between the two heat sinks was 9.2°C, over a single component.

Challenge: The client wanted a redesign of a custom copper heat sink to an equivalent or better aluminum heat sink with embedded copper heat pipes.

Chips/Components: Two Inphi (formerly ClariPhy) Lightspeed-II CL20010 DSPs at 96 watts and two Xilinx 100G Gearboxes at 40 watts each.

Analysis: Analytical modeling and CFD simulations determined the junction temperatures between the four components when covered by a copper heat sink (Design 1), by an aluminum heat sink with heat pipes that stop in front of the components (Design 2), and by an aluminum heat sink with heat pipes that run underneath the components (Design 3). The analysis demonstrated the difference between the heat sink designs in relation to thermal performance.

Test Data: CFD analysis showed an average component case temperature of 158.8°C with the original copper heat sink design, 158.3°C with Design 2, and 152°C with Design 3. The average difference in temperature between Design 1 and Design 2 was 0.5°C and the average temperature difference between Design 1 and Design 3 was 6.8°C.

Here is a CFD simulation from the top of the aluminum heat sink with the air hidden, showing the temperature gradient through the heat sink. (Advanced Thermal Solutions, Inc.)

Solution: The client was shown that aluminum heat sinks with heat pipes provided nearly the same thermal performance as the original copper heat sink design and at much lower cost and weight. The component junction temperature differences between Design 1 and Design 3 were well within the margin set by the client.

o The simulated air velocity is lower and the airflow cross section is larger than in the actual application, meaning absolute temperatures are higher than the customer has seen in their testing.

Net Result: Despite using conservative thermal conductivity calculations, aluminum heat sinks with heat pipes were shown to be a more cost-effective solution for achieving the client’s thermal needs than copper.

CLICK HERE FOR A TECHNICAL DISCUSSION OF THIS PROJECT.

For more information about Advanced Thermal Solutions, Inc. thermal management consulting and design services, visit www.qats.com or contact ATS at 781.769.2800 or ats-hq@qats.com.

ATS’ Standard Board Level Heat Sinks for PCB

We’ve just released our new line of standard board level heat sinks. These stamped heat sinks are ideal for PCB application, especially where TO-220 packages are used. Available now through Digi-Key Electronics​ or at this link from ATS http://www.qats.com/eShop.aspx?produc…

 

To play MIT’s Space Invaders Remix, click here https://scratch.mit.edu/projects/1979…

New Consulting Project Subscription Plan

ATS has released a Consulting Project Subscription Plan (CPSP) for engineering services. From our corporate headquarters in Norwood, Massachusetts,we offers comprehensive thermal management analysis and design services for the telecommunications, medical, military, defense, aerospace, automotive, and embedded computing industries. The new plan allows ATS engineers to become an extension of your team for a pre-determined amount of hours, providing expert thermal and mechanical engineering consultation, design, simulation, testing and validation.

ATS Design Services

Services include Design, Simulation, Testing, Analysis & Prototyping

The CPSP includes the use of ATS thermal lab facilities and covers all projects approved by an authorized representative of subscribed customers. ATS thermal management analysis and design services encompass both experimental and computational simulations using proprietary tools and computational fluid dynamics software packages such as FLOTHERM and CFdesign.

Thermal Testing & Analysis

Thermal Testing & Analysis

The new subscription plan gives customers priority access to ATS engineering and manufacturing resources for all chip, board, enclosure, and system related projects. ATS studies the full packaging domain, including components, circuit boards (PCBs), shelves, chassis, and system packaging.

Consulting capabilities include:

– heat sink, board and fan characterization

– heat sink design and optimization

– PCB & fan tray design and optimization

– liquid cooling design

– prototyping of heat sinks and complete cooling systems

– wind tunnel testing of components, PCBs, chassis and enclosures

ATS offers rapid prototyping of machined parts and cooling systems from its US facilities. Sheet metal fabrication and cut heat sink prototypes are quickly provided from international partners.

Liquid Crystal Thermography

Liquid Crystal Thermography

ATS believes that customers who wish to remain competitive should consider a design-to-suit opportunity solution first. Contrary to common perception, this proves to be less expensive to the customer in the long run, because of the ensuing gain in product efficiency and compatibility. Working side-by-side with customers worldwide, ATS engineers provide tailored solutions to thermal and mechanical packaging challenges on real projects with real schedules.

To learn more about the consulting project subscription plan, call 781-769-2800, email ats-hq@qats.com, or visit www.qats.com.

New maxiFLOW DC-DC Brick Heat Sinks Ideal for Military-COTS Applications

ATS has recently launched a new product line of maxiFLOW heat sinks, specially designed to cool DC-DC converters. The new line of heat sinks can be used with Vicor’s DC-DC converter Bricks, including their military-COTS applications.

Vicor’s Maxi, Mini, and Micro series DC-DC converters are relied upon by over eight thousand OEMs for their proven performance, broad coverage of input and output voltages, ease of mechanical mounting and thermal management flexibility. These converter modules use advanced power processing, control, and packaging technologies to provide the performance, flexibility, and ruggedness expected in a Military COTS product. High frequency ZCS/ZVS switching, advanced power semiconductor packaging, and thermal management provide high-power density with low noise and high efficiency.

maxiFLOW Heat Sink for Half Brick DC-DC Converters

 

ATS’ patented maxiFLOW technology cools millions of BGAs and other PCB components. The same technology is now available for cooling eighth, quarter, half and full brick modules, such as the Micro, Mini, and Maxi series from Vicor. Unlike other converter heat sinks, the patented maxiFLOW heat sink design reduces air pressure drop and provides greater surface area, increasing thermal performance by 30-200%.

Vicor’s Micro, Mini, and Maxi DC-DC Converters

Vicor’s offering of full, half, and quarter-brick modules feature a patented low noise design with the highest reliability and power density available. Fully encapsulated, Maxi, Mini and Micro series DC-DC converters utilize a proprietary spin fill process that assures complete, void free encapsulation making them suitable for the harshest environments. Two grades (H & M) are available with temperatures to -55°C operating and -65°C storage. H & M-Grade modules are qualified to the stringent environmental tests of MIL-STD-810 and MIL-STD-202 and undergo 100% Environment Stress Screening.

By combining technology from industry leaders Vicor and ATS, it can be ensured that DC-DC converters will have superior performance in the harshest environments, which is vital for military and aerospace applications.

To learn more about maxiFLOW Brick DC-DC converter heat sinks, please visit our Power Brick Heat Sink Page or email ats-hq@qats.com, or call us 781-769-2800.

New Qpedia Thermal eMagazine Published!

Qpedia Thermal eMagazine, Volume 6, Issue 11, has just been released and can be downloaded at: http://www.qats.com/Qpedia-Thermal-eMagazine/Back-Issues. Featured articles in this month’s issue include:

Honeycomb Heat Sinks for LEDs

LEDs, or light-emitting diodes, are a form of solid-state lighting. An LED light is often made of a small piece of semiconductor, an integrated optical lens used to shape its radiation pattern, and a heat sink, used to dissipate heat and maintain the semiconductor at low operating temperature. LED lights present many advantages over incandescent light sources, including lower energy consumption, longer lifetime, improved physical robustness, smaller size and faster switching. This article examines Ma et al’s  findings with respect to the honeycomb heat sink design employed in LEDs, which has proven to be highly efficient.

Characteristics of Thermosyphons in Thermal Management

With the increase of heat fluxes and shrinking chip sizes in electronics applications, there is a need to spread the heat from the small chip to the larger heat sink or to transport the heat to a location where there is ample space to remove the heat. Heat pipes, vapor chambers and thermosyphons have been introduced to undertake this task and, in this article, we focus on some aspects of the design of thermosyphons. The advantage of thermosyphons is that they have no capillary limit and can transport large amounts of heat over long distances.

Industry Developments: Heat Pipes Providing High Performance

Heat pipes are increasing in type and use for the benefits they provide. Because of their lower total thermal resistance, heat pipes transfer heat more efficiently and evenly than solid aluminum or copper. Heat pipes contain a small quantity of working fluid (e.g. water, acetone, nitrogen, methanol, ammonia). Learn the conclusions of a recent study that focused on the best working fluid and another study of heat pipes in outer space.

Technology Review: Cold Plates, 2010 to 2012

Qpedia continues its review of technologies developed for electronics cooling applications. We are presenting selected patents that were awarded to developers around the world to address cooling challenges. After reading the series, you will be more aware of both the historic developments and the latest breakthroughs in both product design and applications.

Cooling News featuring the latest product releases and buzz from around the electronics cooling industry.

Download the issue now.

Not a Qpedia subscriber? Subscribe Now for free at: http://www.qats.com/Qpedia-Thermal-eMagazine/Subscribe-to-Qpedia and see why over 18,000 engineers read Qpedia.