# Heat Sink Design: ATS Engineers Bring Ideas to Life

Marketing Communications Specialist Josh Perry sat down with Product Engineering Manager Greg Wong to discuss the process that Advanced Thermal Solutions, Inc. (ATS) engineers go through to create a heat sink and find a thermal solution for customers.

Watch the full conversation in the video below and scroll down to read the transcript of the interview.

JP: Greg, thanks again for joining us here in marketing to explain what it is that goes into designing a heat sink for a customer. So, how does that process begin?
GW: We usually start with a few basic parameters; we call them boundary conditions. So, we start with a few boundary conditions, basics like how much airflow we have, how much space constraint we have around a heat sink, and how much power we’re dissipating, as well as the ambient temperature of the air coming into the heat sink.

So, those are the real basic parts that we need to start out with and sometimes the customer has that information and they give it to us, and usually we double-check too, and then other times the customer has parts of the information, like they know what fan they want to use and they know what kind of chassis they’re putting it in and we take that information and we come up with some rough calculations so we can arrive at those things like air flow and stuff like that.

JP: When you get the data from the customer, how do you determine what the problem is, so that way you can move forward?
GW: We usually start out with an analytical analysis. So, we put pen to paper and we start out with basic principles of heat transfer and thermal resistance and stuff like that so we can understand if what we’re trying to achieve is even feasible and we can come up with some basic parameters just using that analytical analysis.

Like we can calculate what kind of heat sink thermal resistance we need or we can calculate how much air flow we need or, if we have several components in a row, we can calculate what the rough air temperature rise is going to be along that chain of parts. So, there’s a lot we can do when we get the basic information from the customer just on pen and paper.

JP: What’s the next step beyond analytical?
GW: Well, we can do some lab testing or a lot of times we also use CFD simulations and, if our customer has a model they can supply us, we can plug that into the CFD simulations and we can come up with an initial heat sink design and we can put that into the simulations as well and then we set those up and run them.

The great thing, having done these analytical analyses beforehand, we know what to expect from CFD simulations. So that way, if the simulations don’t run quite right, we already have an understanding of the problem, we know what to expect, because CFD is not 100 percent reliable.

I mean, you can go and plug all this stuff in there but you really have to understand the problem to know if the CFD is giving you a good result. So, oftentimes that’s the next stage of the process and from there we can actually produce low-volume prototypes right here in Norwood (Mass.), in our factory. We have CNC machines and manual milling machines, lathes, all that kind of stuff, and we can produce the prototypes and test them out here in our labs.

JP: How much of a benefit is it to be able to create a prototype and to be able to turn one around quickly like that?
GW: Oh, it’s great. I mean, if we had to wait to get parts from China it will take weeks to get. We can turn them around here in a few days and the great thing about that is we can test them in our labs and, you know, when it comes to getting results nothing beats the testing.

I mean, you can do analytical analysis, you can do CFD simulations, but when you actually test the part in a situation that is similar to what the actual thing is going to be that’s where the real meat comes down.

ATS engineers take customer data and using analytical modeling and CFD simulations can design the right cooling solution to meet the customer’s specific thermal needs. (Advanced Thermal Solutions, Inc.)

JP: So, we test the prototypes before sending them out to the customer? We do the testing here or do we send it to them first?
GW: It all depends on what the customer requires. Sometimes the customer has a chassis that we really can’t simulate in our labs, so we might send the prototype heat sinks to the customer and the customer will actually put them into their system to test them out.

Other times, a customer might have a concept and they don’t actually have a product yet, so we’ll mock something up in our labs and we’ll test it and it all just depends what the customer needs and also how complex the problem is.

If it’s a simple heat sink and pretty simple airflow, we might not need to test that because we understand that pretty well, but the more complex the chassis is and how the airflow bends and stuff like that, the greater benefits we get out of lab testing.

JP: Well, I appreciate it Greg. Thank you for taking us through the process of making a heat sink and solving thermal problems for our customers.
GW: Sure Josh. We love seeing new thermal challenges and coming up with ways of keeping stuff cool.

For more information about Advanced Thermal Solutions, Inc. thermal management consulting and design services, visit www.qats.com or contact ATS at 781.769.2800 or ats-hq@qats.com.