Category Archives: Chassis

Integrate More Electronics in Less Space with ATS Integration, Chassis Design and Cooling Solutions

ATS has designed custom housing and chassis for a variety of products including

  • ATCA chassis with 4.5KW cooling capability,
  • Small enclosures such set-top boxes, network interface units, industrial and autonomous vehicle systems
  • High capacity 1U and 2U chassis with integrated air jet impingement to push the air-cooling capacity of the 1U chassis to over 1.8KW.
ATS develops chassis and does systems integration for a wide variety of electronics in datacomm, telecomm, autonomous vehicles, industrial IoT and more

Integration of the cooling system, whether liquid or air, has enabled ATS clients to get their product out to the market right-the-first-time with superb thermal performance and right-cost.

Heat Sink Design: ATS Engineers Bring Ideas to Life

Marketing Communications Specialist Josh Perry sat down with Product Engineering Manager Greg Wong to discuss the process that Advanced Thermal Solutions, Inc. (ATS) engineers go through to create a heat sink and find a thermal solution for customers.

Watch the full conversation in the video below and scroll down to read the transcript of the interview.

JP: Greg, thanks again for joining us here in marketing to explain what it is that goes into designing a heat sink for a customer. So, how does that process begin?
GW: We usually start with a few basic parameters; we call them boundary conditions. So, we start with a few boundary conditions, basics like how much airflow we have, how much space constraint we have around a heat sink, and how much power we’re dissipating, as well as the ambient temperature of the air coming into the heat sink.

So, those are the real basic parts that we need to start out with and sometimes the customer has that information and they give it to us, and usually we double-check too, and then other times the customer has parts of the information, like they know what fan they want to use and they know what kind of chassis they’re putting it in and we take that information and we come up with some rough calculations so we can arrive at those things like air flow and stuff like that.

JP: When you get the data from the customer, how do you determine what the problem is, so that way you can move forward?
GW: We usually start out with an analytical analysis. So, we put pen to paper and we start out with basic principles of heat transfer and thermal resistance and stuff like that so we can understand if what we’re trying to achieve is even feasible and we can come up with some basic parameters just using that analytical analysis.

Like we can calculate what kind of heat sink thermal resistance we need or we can calculate how much air flow we need or, if we have several components in a row, we can calculate what the rough air temperature rise is going to be along that chain of parts. So, there’s a lot we can do when we get the basic information from the customer just on pen and paper.

JP: What’s the next step beyond analytical?
GW: Well, we can do some lab testing or a lot of times we also use CFD simulations and, if our customer has a model they can supply us, we can plug that into the CFD simulations and we can come up with an initial heat sink design and we can put that into the simulations as well and then we set those up and run them.

The great thing, having done these analytical analyses beforehand, we know what to expect from CFD simulations. So that way, if the simulations don’t run quite right, we already have an understanding of the problem, we know what to expect, because CFD is not 100 percent reliable.

I mean, you can go and plug all this stuff in there but you really have to understand the problem to know if the CFD is giving you a good result. So, oftentimes that’s the next stage of the process and from there we can actually produce low-volume prototypes right here in Norwood (Mass.), in our factory. We have CNC machines and manual milling machines, lathes, all that kind of stuff, and we can produce the prototypes and test them out here in our labs.

JP: How much of a benefit is it to be able to create a prototype and to be able to turn one around quickly like that?
GW: Oh, it’s great. I mean, if we had to wait to get parts from China it will take weeks to get. We can turn them around here in a few days and the great thing about that is we can test them in our labs and, you know, when it comes to getting results nothing beats the testing.

I mean, you can do analytical analysis, you can do CFD simulations, but when you actually test the part in a situation that is similar to what the actual thing is going to be that’s where the real meat comes down.

Heat Sink Design

ATS engineers take customer data and using analytical modeling and CFD simulations can design the right cooling solution to meet the customer’s specific thermal needs. (Advanced Thermal Solutions, Inc.)

JP: So, we test the prototypes before sending them out to the customer? We do the testing here or do we send it to them first?
GW: It all depends on what the customer requires. Sometimes the customer has a chassis that we really can’t simulate in our labs, so we might send the prototype heat sinks to the customer and the customer will actually put them into their system to test them out.

Other times, a customer might have a concept and they don’t actually have a product yet, so we’ll mock something up in our labs and we’ll test it and it all just depends what the customer needs and also how complex the problem is.

If it’s a simple heat sink and pretty simple airflow, we might not need to test that because we understand that pretty well, but the more complex the chassis is and how the airflow bends and stuff like that, the greater benefits we get out of lab testing.

JP: Well, I appreciate it Greg. Thank you for taking us through the process of making a heat sink and solving thermal problems for our customers.
GW: Sure Josh. We love seeing new thermal challenges and coming up with ways of keeping stuff cool.

For more information about Advanced Thermal Solutions, Inc. thermal management consulting and design services, visit www.qats.com or contact ATS at 781.769.2800 or ats-hq@qats.com.

Discussion of Thermal Solution for Stratix 10 FPGA

An Advanced Thermal Solutions, Inc. (ATS) client was planning on upgrading an existing board by adding Altera’s high-powered Stratix 10 FPGAs, with estimates of as many as 90 watts of power being dissipated by two of the components and 40 watts from a third. The client was using ATS heat sinks on the original iteration of the board and wanted ATS to test whether or not the same heat sinks would work with higher power demands.

In the end, the original heat sinks proved to be effective and lowered the case temperature below the required maximum. Through a combination of analytical modeling and CFD simulations, ATS was able to demonstrate that the heat sinks would be able to cool the new, more powerful components.

ATS Field Application Engineer Vineet Barot recently spoke with Marketing Director John O’Day and Marketing Communications Specialist Josh Perry about the process he undertook to meet the requirements of the client and to test the heat sinks under these new conditions.

JP: Thanks again for sitting down with us to talk about the project Vineet. What was the challenge that this client presented to us?
VB: They had a previous-generation PCB on which they were using ATS heat sinks, ATS 1634-C2-R1, and they wanted to know if they switched to the next-gen design with three Altera Stratix 10 FPGAs, two of them being relatively high-powered, could they still use the same heat sinks?

Stratix 10 FPGA

The board that was given to ATS engineers to determine whether the original ATS heat sinks would be effective with new, high-powered Stratix 10 FPGA from Altera. (Advanced Thermal Solutions, Inc.)

They don’t even know what the power of the FPGAs is exactly, but they gave us these parameters: 40°C ambient with the junction temperatures to be no more than 100°C. Even though the initial package is capable of going higher, they wanted this limit. That translates to a 90°C case temperature. You have the silicon chip, the actual component with the gates and everything, and you have a package that puts all that together and there’s typically a thermal path that it follows to the lid that has either metal or plastic. So, there’s some amount of temperature lost from the junction to the case.

The resistance is constant so you know for any given power what the max will be. The power that they wanted for FPGAs 1 and 2, which are down at the bottom, was 90 watts, again this is an estimate, and the third one was 40 watts.

JP: How did you get started working towards a solution?
VB: Immediately we tried to identify the worst-case scenario. Overall the board lay-out is pretty well done because you have nice, linear flow. The fans are relatively powerful, lots of good flow going through there. It’s a well-designed board and they wanted to know what we could do with it.

I said, let’s start with the heat sinks that you’re already using, which are the 1634s, and then go from there. Here are the fan specs. They wanted to use the most powerful fan here in this top curve here. This is flow rate versus pressure. The more pressure you have in front of a fan, the slower it can pump out the air and this is the curve that determines that.

Stratix 10 FPGA

Fan operating points on the board, determined by CFD simulations. (Advanced Thermal Solutions, Inc.)

This little area here is sometime called the knee of the fan curve. Let’s say we’re in this area, the flow rate and pressure is relatively linear, so if I increase my pressure, if I put my hand in front of the fan, the flow rate goes down. If I have no pressure, I have my maximum flow rate. If I increase my pressure then the flow rate goes down. What happens in this part, the same thing. In the knee, a slight increase in pressure, so from .59 to .63, reduces the flow rate quite a bit.

Stratix 10 FPGA

CFD simulations showed that the fans were operating in the “knee” where it is hard to judge the impact of pressure changes on flow rate and vice versa. (Advanced Thermal Solutions, Inc.)

So, for a 0.1 difference in flow rate (in cubic meters per second) it took 0.4 inches of water pressure difference, whereas here for a 0.1 difference in flow rate it only took a .04 increase in pressure. That’s why there’s a circle there. It’s a danger area because if you’re in that range it gets harder to predict what the flow will be because any pressure-change, any dust build-up, any change in estimated open area might change your flow rate.

The 1634 is what they were using previously. It’s a copper heat pipe, straight-fin, mounted with a hardware kit and a backing plate that they have. It’s a custom heat sink that we made for them and actually the next –gen, C2-R1, we also made for them for the previous-gen of their board, they originally wanted us to add heat pipes to this copper heat sink, but I took the latest version and said, let’s see what this one will do. For the third heat sink, I went and did some analytical modeling to see what kind of requirement would be needed and I chose one of our off-the-shelf pushPIN™ heat sinks to work because it was 40 watts.

JO: Is the push pin heat sink down flow from the 1634, so it’s getting preheated air?
VB: Yes. This is a pull system, so the air is going out towards the fans.

Stratix 10 FPGA

CFD simulations done with FloTherm, which uses a recto-linear grid. (Advanced Thermal Solutions, Inc.)

This is the CFD modeling that ATS thermal engineer Sridevi Iyengar did in FloTherm. This is a big board. There are a lot of different nodes, a lot of different cells and FloTherm uses recto-linear grids to avoid waviness. You can change the shape of the lines depending on where you need to be. Sri’s also really good at modeling. She was able to turn it around in a day.

Stratix 10 FPGA

Flow vectors at the cut plane, as determined by CFD simulations. (Advanced Thermal Solutions, Inc.)

These are the different fans and she pointed out what the different fan operating curves. Within this curve, she’s able to point out where the different fans are and she’s pointing out that fan 5 is operating around the knee. If you look at all the different fans they all operate around this are, which is not the best area to operate around. You want to operate down here so that you have a lot of flow. If you look at the case temperatures, remember the max was 90°C, we’re at 75°C. We’re 15°C below, 15° margin of error. This was a push pin heat sink on this one up here and 1634s on the high-powered FPGAs down here.

Stratix 10 FPGA

JP: Was there more analysis that you did before deciding the original heat sinks were the solution?
VB: I calculated analytical models using the flow and the fan operating curves from CFD because it’s relatively hard to predict what the flow is going to be. Using that flow and doing a thermal analysis using HSM (heat sink modeling tool), we were within five percent. What Sri simulated with FloTherm was if a copper heat sink with the heat pipe was working super well, let’s try copper without the heat pipe and you can see the temperature increased from 74° to 76°C here, still way under the case temperature. Aluminum with the heat pipe was 77°; aluminum without the heat pipe was 81°, so you’re still under.

Basically there were enough margins for error, so you could go to smaller fans because there’s some concern about operating in the knee region, or you can downgrade the heat sink if the customer wanted. We presented this and they were very happy with the results. They weren’t super worried about operating in the knee region because there’s going to be some other things that might shift the curve a little bit and they didn’t want to downgrade the heat sink because of the power being dissipated.

Stratix 10 FPGA

Final case temperatures determined by CFD simulations and backed up by analytical modeling. (Advanced Thermal Solutions, Inc.)

JO: What were some of the challenges in this design work that surprised you?
VB: The biggest challenges were translating their board into a board that’s workable for CFD. It’s tricky to simplify it without really removing all of the details. We had to decide what are the details that are important that we need to simulate. The single board computer and power supply, this relatively complex looking piece here with the heat sink, and we simplified that into one dummy heat sink to sort of see if it’s going to get too hot. It all comes with it, so we didn’t have to work on it.

The power supply is even harder, so I didn’t put it in there because I didn’t know what power it would be, didn’t know how hot it would be. I put a dummy component in there to make sure it doesn’t affect the air flow too much but that it does have some effect so you can see the pressure drop from it but thermally it’s not going to affect anything.

JO: It really shows that we know how to cool Stratix FPGAs from Altera, we have clear solutions for that both custom and off-the-shelf and that we understand how to model them in two different ways. We can model them with CFD and analytical modeling. We have pretty much a full complement of capabilities when dealing with this technology.

JP: Are there times when we want to create a TLB (thermal load board) or prototype and test this in a wind tunnel or in our lab?
VB: For the most part, customers will do that part themselves. They have the capability, they have the rack and if it’s a thing where they have the fans built into the rack then they can just test it. On a single individual heat sink basis, it’s not necessary because CFD and analytical modeling are so established. You want two independent solutions to make sure you’re in the right ballpark but it’s not something you’re too concerned that the result will be too far off of the theoretical. For another client, for example, we had to make load boards, but even then they did all the testing.

To learn more about Advanced Thermal Solutions, Inc. consulting services, visit https://www.qats.com/consulting or contact ATS at 781.769.2800 or ats-hq@qats.com.

ATS Expands Its US-based Manufacturing Facilities

Advanced Thermal Solutions, Inc. has expanded its Massachusetts manufacturing facilities. This was necessary due to an increase in industrial orders and associated production requirements. The needs for metal and plastic parts and finished products have been growing as markets retool and expand, and buyers continually insist on higher quality, faster deliveries and larger volumes.

ATS expanded manufacturing services can provide contract manufacturing services on a fast, highest quality level. The Norwood facility will meet the needs of most global customers, from rapid prototyping and high volume manufacturing.

The enhanced facilities in Norwood, which is also the global headquarter for ATS, are fully equipped, environmentally responsible, and employ highly skilled staffers who work to extremely high professional standards. Multi-point inspections insure the highest quality manufactured products, from one-of-kind to multi-thousand part production orders.

ATS designs and builds for a wide range of industry requirements. Engineers and technicians manufacture for chassis-level integration, e.g. cooling hardware and other functionalities on network communication cabinets. The associates often design and fabricate stands, rack and display cabinets for retail and office environments.

Fabrication capabilities in metal and plastics include:
Metal and Plastic Extruding
Metal Stamping
CNC Machining
Metal Finishing
Sheet Metal Stamping and Plastic Forming
Plastic Welding

Besides its manufacturing facilities in Norwood, ATS operates factories in Futian, China, a thriving region of high tech manufacturing. The Futian facility is designed for making very high volumes of quality parts, as well as inventory and storage, and worldwide distribution services.

To learn more about ATS manufacturing capabilities, please visit: http://www.qats.com/Services/Manufacturing-Services/65.aspx

Jet Impingement for thermal management: a practical approach to using it in 1U Server Chassis

Jet impingement for thermal management can give you a cost effective, highly directed airflow that can really help semiconductor cooling in your systems. But how do you cost effectively implement such a technology in low cost, 1U servers? Would just going to water, as Google did with their latest patent on a server cooling “sandwich”?

ATS has invented a method to easily deploy jet impingement cooling in both 1U low cost computer servers and in 6U ATCA Chassis. We call it ThermJETTTM. Some of the key elements include:

  • Test results showing cooling PCBs 20ºC better than conventional methods
  • No liquid
  • Relatively easy to implement with mechanical changes

Our readers can learn about ThermJETTTM by calling us at 781-769-2800, emailing us at sales.hq@qats.com or read more at the embedded presentation on ThermJETTTM below: