Tag Archives: altera

Picking the Right Heat Sink Attachment to Avoid Costly PCB Damage

The design of a printed circuit board (PCB) is a complicated process that requires engineers to consider a number of different issues before the board is ready to move beyond prototype and into production. Engineers must think about the physical constraints of a board on component size and placement, the electrical interaction between components, the signal loss through wires and traces, and the thermal management of each component and the system as a whole. [1]

Heat Sink Attachment

ATS maxiFLOW heat sink with superGRIP attachment on a PCB. (Advanced Thermal Solutions, Inc.)

With all of that to consider, it is no wonder that many designs go through several iterations before moving into the production stage. Since the process is already complex and there is a certain amount of trial-and-error in designing a PCB, engineers will look for ways to avoid unnecessary rework that will add significant cost to the project in terms of both time and money.

As noted in a previous article, the type of heat sink attachment technology that an engineer chooses will impact the ease with which a design can be reworked and the amount of damage to the board that will be caused if a change needs to be made.

Push pins, threaded standoffs and z-clips require holes or anchors be drilled into a board, which leaves permanent damage if a component needs to be moved to a new location and could also impact signal routing. There is even the possibility of a short in installation, which also would damage the board. [2]

Non-mechanical attachments such as thermally conductive tape and epoxy are not guaranteed to provide the optimal thermal management because there is “risk of die damage and poor thermal performance due to uneven heat sink placement,” according to a case study from the Altera Corporation. [3]

The case study also said that thermal tape and epoxy have “high risk of damaging the device or PCB” when compared to mechanical attachment technology coupled with thermal interface material (TIM) or phase change material (PCM). In fact, to remove a heat sink attached with epoxy requires an even temperature of 115-120°C.

As the video below shows, removing thermal tape from a heat sink (even one that is not attached to a board) requires a lot of work and tools. If the heat sink is attached to a component, the process to remove it could damage the board or other devices in the vicinity:

A recent chart from NEMI (National Electronics Manufacturing Initiative) indicated that the cost of assembly can be very high per I/O (input/output) on the PCB – considering some of the new BGAs have hundreds of I/O and there are dozens of BGAs on the board, the cost can be prohibitively expensive to put together a board irrespective of the product sector. [4] Obviously, full reworks necessitated by the use of damaging heat sink attachments raise those costs exponentially.

Heat Sink Attachment

Board assembly roadmap from NEMI showing the conversion costs by product sector. [4]

Advanced Thermal Solutions, Inc. (ATS) has created a mechanical attachment technology that makes rework easy and allows engineers to make changes to the design without damaging the PCB or the components. superGRIP™ is a two-part attachment system with a plastic frame clip that fastens around the edge of the component and a metal spring clip that fits between the fins of the heat sink and quickly and easily attaches to the frame.

As the video below demonstrates, superGRIP™ can be installed and removed with common household tools and will provide a steady, firm pressure to ensure optimal thermal performance of the heat sink and the reliability of the device:

The advantage of superGRIP™ is not limited to its ease of use and the time and money that will be saved in reworking a PCB design. The pressure strength and security of the superGRIP™ attachment system allows the use of high-performance phase change materials that can improve heat transfer by as much as 20 times over standard thermal tapes. [4]

superGRIP™ comes with Chomerics Thermflow T-766, a foil PCM with a thickness of 0.0035 millimeters that has an operating range of -55°C to 125°C. According to Chomerics, the T-766 and other traditional non-silicone thermal interface pads “completely fill interfacial air gaps and voids. They also displace entrapped air between power dissipating electronic components. Phase-change materials are designed to maximize heat sink performance and improve component reliability.” [5]

Chomerics added, “Upon reaching the required melt temperature, the pad will fully change phase and attain minimum bond-line thickness (MBLT) – less than 0.001 inch or 0.0254 mm, and maximum surface wetting. This results in practically no thermal contact resistance due to a very small thermal resistance path.”

The combination of frame and spring clip provides uniform force over the heat sink and ensures no movement to optimize the impact of the PCM, while not damaging the solder holding the BGA component in place on the board. ATS engineers designed the attachment technology so that the in-plane and normal forces of both the frame and the spring clip hold the heat sink without stressing the solder even through NEBS (Network Equipment Building Systems) shock and vibration testing. [6]

Save time, save money, and avoid unnecessary headaches during the design phase by using ATS superGRIP™ technology.

[1] http://www.electronicdesign.com/boards/11-myths-about-pcb-layout
[2] “How the maxiGRIP™ attachment system impacts component mechanical behavior,” Qpedia Thermal eMagazine], May 2008.
[3] https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/an/an657.pdf
[4] http://thor.inemi.org/webdownload/newsroom/Articles/CA0599.pdf
[5] https://www.qats.com/cpanel/UploadedPdf/ATS_superGRIP_Launch_Release_

[6] http://vendor.parker.com/852568C80043FA7A/468ea5de5ac341d385257d39005641c7/

[7] “How the maxiGRIP™ attachment system impacts component mechanical behavior,” Qpedia Thermal eMagazine, May 2008.

For more information about Advanced Thermal Solutions, Inc. (ATS) thermal management consulting and design services, visit www.qats.com or contact ATS at 781.769.2800 or ats-hq@qats.com.

#WeCoverTheBoard: ATS Has Thermal Solutions to Cover the Whole Board

We Cover The Board

Advanced Thermal Solutions, Inc. (ATS) has an extensive line of heat sinks and board level thermal solutions that allow ATS engineers to work with industry-leading components and solve the industry’s toughest thermal challenges. (Advanced Thermal Solutions, Inc.)

Advanced Thermal Solutions, Inc. (ATS) has an extensive product line of innovative, off-the-shelf and custom heat sinks and attachments that provides the broadest range of designs to meet the demanding thermal challenges presented by today’s high-powered electronics. Led by its patented maxiFLOW™, which provides the highest thermal performance for physical volume it occupies compared to other heat sinks on the market, ATS has a solution to meet any thermal problem.

In addition, ATS engineers have world-renowned expertise in thermal management and are capable of designing liquid and air cooling solutions using heat sinks, heat pipes, heat exchangers, fans, and cold plates. ATS has more than two decades of solving the industry’s toughest thermal challenges and have a proven record of success in handling the industry’s leading components.

From the latest generation of Intel processors to Altera’s high-powered Stratix FPGA to Qualcomm’s ARM processors to Texas Instruments, Nvidia, NXP, Cavium, and many more, ATS has the experience, the analytical capability, and the products to provide you with the necessary thermal management.

Board Level Solutions

maxiFLOW™ – maxiFLOW™ heat sink design provides the highest thermal performance for the physical volume that it occupies as compared to other heat sink designs. maxiFLOW™ heat sinks are ideally suited to meet the thermal requirements of a broad range of electronics packages, including: BGA, QFP, LCC, LGA, CLCC, TSOP, DIPs and LQFP.

Straight Fin – ATS offers a large variety of high performance Straight fin heat sinks that can be used in many applications where the direction of the airflow is clearly defined. The straight fin heat sink can be utilized in areas where the maxiFLOW™ flair-fanned cannot be used, providing an excellent alternative for cooling thermally sensitive devices.

Cross-Cut – Electronics packages are numerous and range from BGA, QFP, LCC, LGA, CLCC, TSOP, DIPs, LQFP and many others. ATS offers a large variety of cross cut heat sinks that can be used in a variety of applications where the direction of the airflow is ambiguous. The cross cut allow for the heat sink to receive air from any direction.

Pin Fin – Electronics packages are numerous and range from BGA, QFP, LCC, LGA, CLCC, TSOP, DIPs, LQFP and many others. ATS offers a large variety of cross cut heat sinks that can be used in a variety of applications where the direction of the airflow is ambiguous. The cross cut tape on allow for the heat sink to receive air from any direction and can be easily attached to the device by a thermally conductive tape.

fanSINK™ – In many electronic systems, such as telecomm and datacom chassis, or 1U, 2U servers and blades, the system air flow rate is not adequate for cooling of high power devices. Therefore, additional air flow introduced at the device level is required. ATS offers a large family of fanSINK™ products for applications where FPGA or ASICs in BGA packages are deployed. ThefanSINK™ can be either clipped on to the device by maxiGRIP™ or superGRIP™ heat sink attachment technologies or taped on.

Power Brick – DC/DC power converters are an essential part of PCB design and their performance requires a stable temperature for optimum performance. ATS has produced a broad array of high performance power brick heat sinks, based off of the patented maxiFLOW™ design, to effectively cool DC/DC power converters and power modules deployed in a host of electronics applications. ATS’ power brick heat sinks are available in full, half, quarter and eighth packaging.

pushPIN™ – With over 108K different push pin heat sink assembly configurations, ATS offers the largest push pin heat sink offering in the market. Select from fine and ultra-fine pitch heat sinks designed for high velocity air flows and coarse pitch heat sinks for low velocity air flow conditions. Offered in straight fin, cross-cut and the ultra performance maxiFLOW™ fin geometries, ATS pushPIN™ heat sink line is suited to meet a wide variety of applications for components ranging in size from 25mm-70mm. Push pins are offered in brass and plastic and are packaged with different compression springs to achieve precise force required for secure attachment.

blueICE™ (Ultra Low Profile) – In many electronics systems, such as Telecomm, Datacomm, Biomedical equipment and others, card-to-card spacing is small, yet stringent thermal requirements remain the same. Electronics packages such as BGA, QFP, LCC, LGA, CLCC, TSOP, DIP, LQFP are commonly used with stringent thermal requirements in a tight space with limited airflow. Ultra low profile heat sinks offered by ATS range from 2 to 7mm in height and are ideally suited for tight-space application electronics since they offer the best thermal performance. Their thermal resistance is as low as 1.23° C/W within an air velocity of 600 ft/min.

Standard Board Level – ATS’ high quality, low cost, aluminum stamped heat sinks are ideal for low power thermal management solutions. The simple design and manufacturing of these heat sinks allows high volume manufacturing and reducing assembly costs. Stamped heat sinks are ideally used for TO packages and other power devices.

Extrusions – Aluminum extrusions are the most cost-effective solutions for the majority of electronic cooling applications. ATS offers a wide variety of aluminum profiles used for heat sink fabrication and other aluminum applications. Whether you are seeking a standard extrusion profile or the expertise from our design team to create a new and innovative profile, ATS has the capabilities and expertise to meet your requirements.

Heat Sink Attachments

superGRIP™ – superGRIP™ is a two component attachment system which quickly and securely mounts heat sinks to a wide range of components, without needing to drill holes in the PCB. superGRIP™ provides a strong, even attachment force with minimal space required around the components perimeter, making it ideal for densely populated PCBs. superGRIP™ is available with ATS maxiFLOW™ heat sink and straight fin heat sinks.

maxiGRIP™ – maxiGRIP™ is a unique, two component attachment system which quickly and securely mounts heat sinks to a wide range of components, without needing to drill holes in the PCB. The steady, even attachment force provided by maxiGRIP™ allows the heat sink and thermal interface material to achieve maximum thermal performance. maxiGRIP™ is available with ATS maxiFLOW™, straight fin, fanSINK™ and device specific heat sinks.

Thermal Tape
– The interface material plays a pivotal role in transporting the heat from the component to the heat sink. The tape is applied to the base of the heat sink and then the heat sink is attached to the component. For tape to work well, proper cleaning of the component surface and the base of heat sink is required. Also, it is usually necessary to apply the tape with a certain amount of pressure.

Discussion of Thermal Solution for Stratix 10 FPGA

An Advanced Thermal Solutions, Inc. (ATS) client was planning on upgrading an existing board by adding Altera’s high-powered Stratix 10 FPGAs, with estimates of as many as 90 watts of power being dissipated by two of the components and 40 watts from a third. The client was using ATS heat sinks on the original iteration of the board and wanted ATS to test whether or not the same heat sinks would work with higher power demands.

In the end, the original heat sinks proved to be effective and lowered the case temperature below the required maximum. Through a combination of analytical modeling and CFD simulations, ATS was able to demonstrate that the heat sinks would be able to cool the new, more powerful components.

ATS Field Application Engineer Vineet Barot recently spoke with Marketing Director John O’Day and Marketing Communications Specialist Josh Perry about the process he undertook to meet the requirements of the client and to test the heat sinks under these new conditions.

JP: Thanks again for sitting down with us to talk about the project Vineet. What was the challenge that this client presented to us?
VB: They had a previous-generation PCB on which they were using ATS heat sinks, ATS 1634-C2-R1, and they wanted to know if they switched to the next-gen design with three Altera Stratix 10 FPGAs, two of them being relatively high-powered, could they still use the same heat sinks?

Stratix 10 FPGA

The board that was given to ATS engineers to determine whether the original ATS heat sinks would be effective with new, high-powered Stratix 10 FPGA from Altera. (Advanced Thermal Solutions, Inc.)

They don’t even know what the power of the FPGAs is exactly, but they gave us these parameters: 40°C ambient with the junction temperatures to be no more than 100°C. Even though the initial package is capable of going higher, they wanted this limit. That translates to a 90°C case temperature. You have the silicon chip, the actual component with the gates and everything, and you have a package that puts all that together and there’s typically a thermal path that it follows to the lid that has either metal or plastic. So, there’s some amount of temperature lost from the junction to the case.

The resistance is constant so you know for any given power what the max will be. The power that they wanted for FPGAs 1 and 2, which are down at the bottom, was 90 watts, again this is an estimate, and the third one was 40 watts.

JP: How did you get started working towards a solution?
VB: Immediately we tried to identify the worst-case scenario. Overall the board lay-out is pretty well done because you have nice, linear flow. The fans are relatively powerful, lots of good flow going through there. It’s a well-designed board and they wanted to know what we could do with it.

I said, let’s start with the heat sinks that you’re already using, which are the 1634s, and then go from there. Here are the fan specs. They wanted to use the most powerful fan here in this top curve here. This is flow rate versus pressure. The more pressure you have in front of a fan, the slower it can pump out the air and this is the curve that determines that.

Stratix 10 FPGA

Fan operating points on the board, determined by CFD simulations. (Advanced Thermal Solutions, Inc.)

This little area here is sometime called the knee of the fan curve. Let’s say we’re in this area, the flow rate and pressure is relatively linear, so if I increase my pressure, if I put my hand in front of the fan, the flow rate goes down. If I have no pressure, I have my maximum flow rate. If I increase my pressure then the flow rate goes down. What happens in this part, the same thing. In the knee, a slight increase in pressure, so from .59 to .63, reduces the flow rate quite a bit.

Stratix 10 FPGA

CFD simulations showed that the fans were operating in the “knee” where it is hard to judge the impact of pressure changes on flow rate and vice versa. (Advanced Thermal Solutions, Inc.)

So, for a 0.1 difference in flow rate (in cubic meters per second) it took 0.4 inches of water pressure difference, whereas here for a 0.1 difference in flow rate it only took a .04 increase in pressure. That’s why there’s a circle there. It’s a danger area because if you’re in that range it gets harder to predict what the flow will be because any pressure-change, any dust build-up, any change in estimated open area might change your flow rate.

The 1634 is what they were using previously. It’s a copper heat pipe, straight-fin, mounted with a hardware kit and a backing plate that they have. It’s a custom heat sink that we made for them and actually the next –gen, C2-R1, we also made for them for the previous-gen of their board, they originally wanted us to add heat pipes to this copper heat sink, but I took the latest version and said, let’s see what this one will do. For the third heat sink, I went and did some analytical modeling to see what kind of requirement would be needed and I chose one of our off-the-shelf pushPIN™ heat sinks to work because it was 40 watts.

JO: Is the push pin heat sink down flow from the 1634, so it’s getting preheated air?
VB: Yes. This is a pull system, so the air is going out towards the fans.

Stratix 10 FPGA

CFD simulations done with FloTherm, which uses a recto-linear grid. (Advanced Thermal Solutions, Inc.)

This is the CFD modeling that ATS thermal engineer Sridevi Iyengar did in FloTherm. This is a big board. There are a lot of different nodes, a lot of different cells and FloTherm uses recto-linear grids to avoid waviness. You can change the shape of the lines depending on where you need to be. Sri’s also really good at modeling. She was able to turn it around in a day.

Stratix 10 FPGA

Flow vectors at the cut plane, as determined by CFD simulations. (Advanced Thermal Solutions, Inc.)

These are the different fans and she pointed out what the different fan operating curves. Within this curve, she’s able to point out where the different fans are and she’s pointing out that fan 5 is operating around the knee. If you look at all the different fans they all operate around this are, which is not the best area to operate around. You want to operate down here so that you have a lot of flow. If you look at the case temperatures, remember the max was 90°C, we’re at 75°C. We’re 15°C below, 15° margin of error. This was a push pin heat sink on this one up here and 1634s on the high-powered FPGAs down here.

Stratix 10 FPGA

JP: Was there more analysis that you did before deciding the original heat sinks were the solution?
VB: I calculated analytical models using the flow and the fan operating curves from CFD because it’s relatively hard to predict what the flow is going to be. Using that flow and doing a thermal analysis using HSM (heat sink modeling tool), we were within five percent. What Sri simulated with FloTherm was if a copper heat sink with the heat pipe was working super well, let’s try copper without the heat pipe and you can see the temperature increased from 74° to 76°C here, still way under the case temperature. Aluminum with the heat pipe was 77°; aluminum without the heat pipe was 81°, so you’re still under.

Basically there were enough margins for error, so you could go to smaller fans because there’s some concern about operating in the knee region, or you can downgrade the heat sink if the customer wanted. We presented this and they were very happy with the results. They weren’t super worried about operating in the knee region because there’s going to be some other things that might shift the curve a little bit and they didn’t want to downgrade the heat sink because of the power being dissipated.

Stratix 10 FPGA

Final case temperatures determined by CFD simulations and backed up by analytical modeling. (Advanced Thermal Solutions, Inc.)

JO: What were some of the challenges in this design work that surprised you?
VB: The biggest challenges were translating their board into a board that’s workable for CFD. It’s tricky to simplify it without really removing all of the details. We had to decide what are the details that are important that we need to simulate. The single board computer and power supply, this relatively complex looking piece here with the heat sink, and we simplified that into one dummy heat sink to sort of see if it’s going to get too hot. It all comes with it, so we didn’t have to work on it.

The power supply is even harder, so I didn’t put it in there because I didn’t know what power it would be, didn’t know how hot it would be. I put a dummy component in there to make sure it doesn’t affect the air flow too much but that it does have some effect so you can see the pressure drop from it but thermally it’s not going to affect anything.

JO: It really shows that we know how to cool Stratix FPGAs from Altera, we have clear solutions for that both custom and off-the-shelf and that we understand how to model them in two different ways. We can model them with CFD and analytical modeling. We have pretty much a full complement of capabilities when dealing with this technology.

JP: Are there times when we want to create a TLB (thermal load board) or prototype and test this in a wind tunnel or in our lab?
VB: For the most part, customers will do that part themselves. They have the capability, they have the rack and if it’s a thing where they have the fans built into the rack then they can just test it. On a single individual heat sink basis, it’s not necessary because CFD and analytical modeling are so established. You want two independent solutions to make sure you’re in the right ballpark but it’s not something you’re too concerned that the result will be too far off of the theoretical. For another client, for example, we had to make load boards, but even then they did all the testing.

To learn more about Advanced Thermal Solutions, Inc. consulting services, visit https://www.qats.com/consulting or contact ATS at 781.769.2800 or ats-hq@qats.com.

ATS’ maxiFLOW Heat Sinks a Great Match with Altera’s Cyclone V

ATS’ new Heat Sink Selection Tool on www.qats.com allow engineers to match existing ATS heat sinks with specific applications from the top component manufacturers in the market.

Altera’s Cyclone® V FPGAs provide the industry’s lowest system cost and power, along with performance levels that make the device family ideal for differentiating your high-volume applications. You’ll get up to 40 percent lower total power compared with the previous generation, efficient logic integration capabilities, integrated transceiver variants, and SoC FPGA variants with an ARM®-based hard processor system (HPS).

Cyclone V (courtesy of Altera, http://www.altera.com/devices/fpga/cyclone-v-fpgas/cyv-index.jsp)

ATS has over 1,800 heat sinks that meet the specific application requirements of Altera. For example, the Altera Cyclone® V component part number 5CGXFC7D7F27C8NES has 17 cooling solutions, including ATS maxiFLOWTM high performance bga heat sink. maxiFLOWTM unique design provides thermal performance that is 30- 200% better than the conventional heat sinks. By combining maxiFLOWTM heat sinks with the Cyclone® V FPGAs, you can get the power, cost, and performance levels you need for high-volume applications including protocol bridging, motor control drives, broadcast video converter and capture cards, and handheld devices.

maxiFLOW heat sink results from the new Heat Sink Selection Tool

For mounting the heat sink to the pcb, these heat sinks are available with pre-assembled thermal interface materials and with the maxiGRIPTM heat sink attachment. maxiGRIPTM provides a steady, even pressure from the heat sink to the Cyclone® V with easy instillation and removal, eliminating the need to drill holes in the pcb.

Test out the new Heat Sink Selection Tool to view the full list of heat sinks specific to Altera components, along with the full list of component manufacturers that are compatible with ATS cooling solutions.