How to Calculate the Loads for a Liquid Cooling System

This article presents basic equations for liquid cooling and provides numerical  examples on how to calculate the loads in a typical liquid cooling system. When exploring the use of liquid cooling for thermal management, calculations are needed to predict its performance. While it is often assumed that a liquid coolant itself dissipates heat from a component to the ambient, this is not the case. A closed loop liquid cooling system requires a liquid-to-air heat exchanger. Because of its structure, several equations must be calculated to fully understand the performance and behavior of a liquid cooled system.

Cold plates bring localized cooling by transferring heat to a liquid that dissipates into the ambient or a secondary liquid. ATS cold plates cool high-powered electronics, IGBT modules, lasers, motor devices, automotive components, medical equipment, and other applications where liquid cooling is needed. Their internal, mini-channel fin structure enhances the surface area to maximize heat transfer with low pressure drop characteristics and provides uniform surface temperature.

==> Learn more at our website:

One response to “How to Calculate the Loads for a Liquid Cooling System

Leave a Reply

Your email address will not be published. Required fields are marked *