Tag Archives: Thermoelectric Cooler

Latest Qpedia Now Available for Download

Qpedia Thermal eMagazine June 2013

Qpedia Thermal eMagazine June 2013

Qpedia Thermal eMagazine, Volume 7, Issue 6, has just been released and can be downloaded at: http://www.qats.com/Qpedia-Thermal-eMagazine/Back-Issues.

This month’s featured articles include:

Enhancing Heat Sink Performance Using Thermoelectric Coolers

With the increase in the power dissipation of components and the parallel reduction of their size, engineers and researchers across the globe have been predicting that the era of air cooling might come to an end. Even though in some applications, with very high power dissipations such as IGBTs, air cooling may not be adequate and liquid cooling is a must; air cooling will continue to be the first choice for most electronic cooling applications for many years to come. Advances in air cooling continue to extend its use and the implementation of thermoelectric coolers (TECs) in heat sink applications is one such effort.

Immersion Liquid Cooling for Servers in Data Centers

Data center designers and operators have invented many ways to improve the data center’s thermal efficiency, such as optimizing the rack layout and air conditioner location, separating cold aisles and hot aisles, optimizing the configuration of pipes and cables in under-floor plenum, introducing liquid cooling to high-power severs. While the above methods can improve the data center heat load management, they cannot dramatically reduce the Power Usage Effectiveness (PUE). This article reviews two relatively new solutions: active single-phase immersion cooling technology proposed by Green Revolution Cooling (GRC) and a passive two-phase immersion cooling technology proposed by the 3M Company.

Industry Developments: Piezoelectric Cooling

Piezoelectric fans and jets must overcome various materials, thermal and mechanical challenges to become widely used in electronics cooling, but because they consume just 1/150 of the electricity of circular fans, run with little noise and have no parts that will wear out, they remain of great interest. In this article, a number of issues are addressed, including the inverse effect of the piezoelectric phenomena and dual piezoelectric cooling jets.

Technology Review: Innovative Cold Plate Designs, 2007 – 2012

In this issue our spotlight is on innovative cold plate designs. There is much discussion about its deployment in the electronics industry, and these patents show some of the salient features that are the focus of different inventors.

& Cooling News featuring the latest product releases and buzz from around the electronics cooling industry.

Download the issue now.

Not a Qpedia subscriber? Subscribe Now for free at: http://www.qats.com/Qpedia-Thermal-eMagazine/Subscribe-to-Qpedia and see why over 18,000 engineers read Qpedia.

Did you know Qpedia also publishes a book series? The five volume set contains 248 in-depth articles, researched and written by veteran engineers. They address the most critical areas of electronics cooling, with a wide spectrum of topics and thorough technical explanation. Order Now.

The New Qpedia Thermal eMagazine is Out

Qpedia Thermal eMagazine, Volume 7, Issue 4, has just been released and can be downloaded at: http://www.qats.com/Qpedia-Thermal-eMagazine/Back-Issues.

Featured articles in this issue include:

Dropwise Condensation in Vapor Chambers
Considerable attention has been devoted in the past to the evaporation process taking place in a vapor chamber. However, increased heat fluxes at the condensation end have prompted efforts to improve the condensation performance of the vapor chambers. This article presents a review of a novel method for improving the thermal performance of a vapor chamber condensing section by using special surfaces promoting dropwise condensation.

 

Heat Sink Manufacturing Using Metal Injection Molding

Using Metal Injection Molding It is only in the last few years that metal injection molding (MIM) has gained a foothold in the thermal community and its salient advantages have become more evident. The MIM process allows intricate features to be added into the heat sink design to boost thermal performance and its production process is very scalable compared with machining. Injection molding enables complex parts to be formed as easily as simple geometries, thereby allowing increased design freedom.  This article explore the merits of copper material in the MIM process.

 

Industry Developments: Thermoelectric Modules and Coolers

Thermoelectric modules (TEMs) are rugged, reliable and quiet devices that serve as heat pumps. The real heat-moving components inside TEMs are thermoelectric coolers or TECs. These are solid-state heat pumps and are designed for applications where temperature stabilization, temperature cycling, or cooling below ambient, are required. Today, TEMs are used in electro-optics applications, such as the cooling and stabilizing of laser diodes, IR detectors, cameras (charge coupled device), microprocessors, blood analyzers and optical switches. This article explores some of the latest developments in these devices.

 

Technology Review: Reducing Thermal Spreading Resistance in Heat Sinks

In this issue our spotlight is on reducing spreading resistance in heat sinks. There is much discussion about how this phenomenon can be achieved, and these patents show some of the salient features that are the focus of different inventors.

 

Cooling News featuring the latest product releases and buzz from around the electronics cooling industry.

 

Download the issue now.

 

Not a Qpedia subscriber? Subscribe Now for free at: http://www.qats.com/Qpedia-Thermal-eMagazine/Subscribe-to-Qpedia and see why over 18,000 engineers read Qpedia.

QPedia Thermal eMagazine Spotlight: TECs and Micro TECs for Spot Cooling Electronics

QPedia Thermal eMagazine December 2010 Front Cover for the article, "TECs and microTECS in spot coolin" Our engineering team has put together a terrific tutorial on TECs (Thermo Electric Coolers), and microTECs in our December 2010 Qpedia Thermal eMagazine. You’ll find the article on page 20.

The microprocessor evolution should make the jobs of system thermal engineers easier. However the complexity of the processor brings a unique set of cooling challenges. Spot cooling with TECs offers several advantages which must be carefully studied to ensure a successful implementation.

So, let us help you get a jump start on this important tool in your thermal professional toolkit, click over to our December 2010 QPedia and scroll down to page 20 to read, “TECs and Micro TECs for Spot Cooling Electronics“.