Category Archives: Thermal Industry News

What is Geothermal Cooling and Heating Technology and How Does it Work

By Norman Quesnel
Senior Member of Marketing Staff
Advanced Thermal Solutions, Inc. (ATS)

If you cross-sectioned the Earth, it would show a multi-layered structure with a solid iron core spinning in a sea of liquid iron and sulfur. You would also find great quantities of flowing heat starting at the very center and moving outward.

The flow of heat from Earth’s interior to the surface is estimated at 47 terawatts, i.e. 47 trillion watts, and comes from two main sources in roughly equal amounts: the radiogenic heat produced by the radioactive decay of isotopes in the mantle and crust and the primordial heat left over from the formation of the Earth 4-1/2 billion years ago.

In a recent study, scientists estimated the temperature of the center of the Earth at 6,000°C (10,800°F) – about as hot as the surface of the sun. [2]

Geothermal Cooling

Fig. 1. Earth’s Outermost Layer, the Crust, and Comprises Just 1% of Our Planet’s Mass. [2]

In fact, more than 99% of the inner Earth is hotter than 1,000°C (1,800°F). Unlike the sun, the Earth is much cooler at its outer crust and on its outside surface. But even at cooler temperatures, the shallow depths of the Earth’s crust provide a geothermal resource for both heating and cooling structures built above the ground.

By drilling deeper down, but still within the crust, much higher temperatures can be harnessed to help generate power that can in turn provide industrial and even community-wide levels of heating and cooling. High-temperature geothermal heat has tremendous potential because it represents an inexhaustible, and virtually emissions-free, energy source. [3]

Geothermal Cooling

Fig. 2. Simple Diagram of Near Surface Heating and Cooling Geothermal System. [4]

Near Surface Heating and Cooling Systems

The ground absorbs nearly half of the solar energy the planet receives. As a result, the Earth remains at a constant, moderate temperature just below its surface year-round. However, air temperature varies greatly from summer to winter, making air source (traditional) heating and cooling least efficient when you need it the most. [5]

Geothermal heat pumps take advantage of the moderate temperatures typically found at shallow depths to boost efficiency and reduce the operational costs of architectural heating and cooling systems. Unlike conventional heating and air conditioning systems, which use the outside air to absorb and release heat, geothermal systems use heat pumps to transfer heat from below the surface.

Geothermal Cooling

Fig. 3. Four Basic Types of Geothermal Heat Pump System Shown in a US Department of Energy Illustration. Open Loop Systems Can Use Either a Man-made or Natural Water Reservoir. [6]

The pumps connect to closed loops of plastic pipes buried either horizontally or vertically in the ground below the frost line (about 100-200 meters), where the temperature is consistently between 40-80°F depending on location. Called ground loops, the underground pipes are filled with water and sealed tight except where they are connected to the geothermal heating and cooling system inside the building.

In winter, water running through the loops will absorb heat from the ground and pipe it into the home, while the system will run in the opposite direction to keep things cool during the scorching summer months. The pipes are connected to a heat pump and water heater inside the house and users can control the indoor climate through a smart thermostat.

There are four basic configurations for geothermal heat pump ground loops. Three of them are closed-loop systems that use a self-contained water and an anti-freeze solution. The open-loop system uses ground water or water from a well. [6]

Geothermal Cooling

Fig 4. Geothermal Pumps Can Efficiently Heat and Cool Homes and Commercial Buildings. [7]

Newer geothermal systems can be installed at shallower depths, less than 50 feet. Even at these levels, the ground can provide a heat source in colder weather and serve as a cooling heat sink when surface temperatures are hot. [8]

There are several providers of geothermal heating and cooling systems. Google’s parent company, Alphabet, is among them with its newly created startup, Dandelion. Originally conceived at X, Alphabet’s innovation lab, Dandelion is now an independent company offering geothermal heating and cooling systems to homeowners, starting in the northeastern U.S. [9]

To put in the ground loops, Dandelion uses its “clean drilling technology” to dig a few small holes in the yard, each only a few inches wide. Then a technician will install the other components inside the house, and the system should be up and running in two or three days. After that, the only regular maintenance is an air filter change every six to 12 months.

Deeper Down Geothermal Systems

The Kola borehole, on Russia’s Kola Peninsula is the deepest mankind has ever drilled into the Earth’s crust. After nearly 15 years of boring, the hole was 12,262 meters (40,230 feet) – over 12 kilometers or 7.6 miles deep. At that depth, the temperature was 185°C (356°F). [10]

Geothermal Cooling

Fig. 5. Very Hot, Deep Underground Thermal Energy Can Convert Water to Steam to Power Turbine Generators in Power Plants. [11]

Even at half that depth, there can be much more heat than a near-surface geothermal system can access. The Norwegian company Rock Energy wants to be an international leader in high power geothermal heat and energy. A pilot plant has been planned for Oslo that will collect heat from 5,500 meters deep. The high temperatures from this depth can heat water to 90-95°C (194-203°F) and can be used in district heating plants. [12]

Rock Energy is planning to drill two wells, an injection well where cold water is pumped down, and a production well where hot water flows back up. Between these will be so-called radiator leads that connect the wells. The water is then exchanged with water in a district heating plant managed by the Norwegian power company Hafslund. [13]

Geothermal Cooling

Figure 6. Water is Superheated by Deeply Located Hot Rocks and Pumped to the Surface Where It Converts a Separate Liquid to Turbine-Driving Steam. [14]

A hot dry rock system potentially allows geothermal energy to be captured from hot rocks, 3-5 km (1.8-3.1 miles) underground. In operation, cold water is pumped at high pressure down into the very high-temperature, fractured hot rock. The water becomes superheated as it passes through the rock on its way to the extraction boreholes.

In Figure 6, the diagram of a hot dry rock system shows hot water emerging from the borehole and directed through a heat exchanger. After giving up its heat, the cooled water is recycled back down the injection borehole in the hot rock bed. The working fluid, a low boiling point liquid, circulating through the secondary circuit of the heat exchanger is vaporized by the heat extracted from the well water and used to drive the power plant’s turbines. [14]

At both shallow depths and miles down, the Earth offers thermal energy that can harnessed for heating, cooling and power generation. Compared to most other processes, geothermal energy is cleaner, continuous and, as technology advances, a low cost alternative to fossil fuels or to solar and wind-powered systems.

References
1. https://en.wikipedia.org/wiki/Earth%27s_internal_heat_budget
2. https://www.geokraftwerke.de/en/geokraftwerke/geothermal-energy/geothermics.html
3. https://www.sciencedaily.com/releases/2015/10/151023094414.htm
4. http://www.coolingzone.com/index.php?read=1279
5. http://www.climatemaster.com/residential/how-geothermal-works/
6. https://www.pinterest.com/pin/524387950340721445/
7. https://www.geoexchange.org/geothermal-101/
8. https://en.wikipedia.org/wiki/Geothermal_heat_pump
9. https://dandelionenergy.com/
10. https://en.wikipedia.org/wiki/Kola_Superdeep_Borehole
11. http://photonicswiki.org/index.php?title=Survey_of_Renewables
12. https://www.qats.com/cms/2017/04/25/industry-developments-district-cooling-systems/
13. https://www.sintef.no/en/latest-news/energy-underfoot-/
14. http://www.mpoweruk.com/geothermal_energy.htm

For more information about Advanced Thermal Solutions, Inc. (ATS) thermal management consulting and design services, visit www.qats.com/consulting or contact ATS at 781.769.2800 or ats-hq@qats.com.

Industry Developments in District Cooling Systems

By Norman Quesnel, Senior Member of Marketing Staff
Advanced Thermal Solutions, Inc.

(This article will be featured in an upcoming issue of Qpedia Thermal e-Magazine, an online publication dedicated to the thermal management of electronics. To get the current issue or to look through the archives, visit http://www.qats.com/Qpedia-Thermal-eMagazine. To read other stories from Norman Quesnel, visit https://www.qats.com/cms/?s=norman+quesnel.)

District cooling is the centralized production and delivery of cooling energy to collective regions of office, public or domestic structures. In a typical district cooling scheme, a central plant chills water from a contained reservoir or taken from an ocean or lake. The chilled water is delivered via underground, insulated pipelines to select buildings in a district. The buildings contain pumps and tubing systems that circulate the cold water within the living areas.

Air is forced past the circulating cold water to produce an air conditioned environment. The resulting warmed water in the tubes is returned to the central plant for re-chilling and recirculating.

District cooling can use either regular water or seawater and can be powered by electricity or natural gas. The output of one district cooling plant is enough to meet the cooling-energy demands of dozens of buildings. [1]

Nowhere is advanced district cooling being developed more than in the Middle East, particularly in its wealthier – and hotter – countries like those in the Gulf Cooperation Council (GCC): Saudi Arabia, Kuwait, United Arab Emirates (UAE), Qatar, Bahrain and Oman. Air conditioning is responsible for about 70 percent of the GCC’s electricity demand during peak summer months.

District Cooling

Figure 1. CAD Image of District Cooling in a High-Rise Building in Lusail City, an Urban Development Planned for Qatar. [2]

One district cooling example is Qatar’s very smart Lusail City. Still largely in planning, Lusail will use a state-of-the-art system to provide cool environments in its modern business and residential buildings. In typical fashion, the Lusail system will use chilled water in pipes feeding to different localities via an extensive system of underground tunnels and local substations. [2]

High Cooling Performance

In many ways, district cooling is a superior alternative to conventional, localized air conditioning. It helps reduce costs and energy consumption for both customers and governments alike, while also protecting the environment by cutting carbon dioxide emissions.

District Cooling

Figure 2. District Cooling Systems can Store 30% of Potential Cooling Output by Holding Water in Reserve for Seasonal Requirements. [3]

Some of the advantages district cooling has over traditional air conditioning includes 50 percent less energy consumption with better accommodation of peak cooling power demands. There are substantially lower maintenance costs than for individual, localized units. District cooling’s equipment has, on average, a 30-year working life, just about as long as conventional urban air conditioning systems.

District cooling systems reduce CO2 emissions because of their lower energy consumption. The centralized systems also free up useable space in individual buildings, including rooftops and basements where local cooling systems were formerly installed. [3]

District Cooling

Figure 3. District Cooling Layout for King Abdullah Financial District (KAFD) Under Construction Near Riyadh, Saudi Arabia. Total Capacity is 100,000 Tons of Refrigeration. [4]

District cooling is measured in tons of refrigeration, TRs, equivalent to 12,000 BTUs per hour. A refrigeration ton is the unit of measure for the amount of heat removed. It is defined as the heat absorbed by one ton (2,000 pounds) of ice causing it to melt completely by the end of one day (24 hours). In Qatar and Saudi Arabia, the district cooling systems being developed will contribute a combined 4.5 million tons of refrigeration.

District Cooling

Figure 4. District Cooling at the Nation Towers Area of Abu Dhabi is Managed by Tabreed, Which has 71 District Cooling Plants Throughout the Gulf Cooperation Council, GCC. [5]

Nation Towers is the site of two skyscrapers near the southern end of the ocean-bordering Corniche in Abu Dhabi, the capital of the UAE. The towers, 65 and 52 floors tall respectively, are joined by a sky bridge and together offer nearly 300,000 m2 of usable space.

The towers and the surrounding structures are air conditioned by a district cooling plant managed by Tabreed, the largest name in district cooling in the GCC. In 2015, per Tabreed, the company’s UAE-based district cooling systems reduced the amount of energy used in air conditioning by 1.3 billion kilowatt hours – the equivalent use of 44,000 UAE homes. [6]

Northeast from Abu Dhabi, the UAE city of Dubai is home to the sprawling WAFI Mall. The site uses Siemens Demand Flow technology to optimize the chilled water system that keeps its stores and restaurants at comfortable temperatures. Siemens Demand Flow technology uses specialized algorithms to optimize the entire chilled water system of a cooling plant, delivering energy savings of between 15 and 30 percent.

By simplifying operations, increasing the cooling capacity and improving efficiency, the system is able to reduce flow in periods of lesser demand, lowering operation and maintenance costs and significantly lowering energy use. [7]

But the Middle East is not the only part of the world employing district cooling. In another warm country, India, a new business district is being constructed on nearly 900 acres in the state of Gujarat. This is the Gujarat International Finance Tec-City, whose district cooling will provide a total cooling capacity of 1,800,000 TR. [8]

In Europe, Copenhagen is home to a successful district cooling operation. The city may not be thought of as in much need of air conditioning; summer high temperatures rarely exceed the mid-70s Fahrenheit. But even in Denmark, there is a need for indoor cooling inside buildings with large server rooms or where many people work or shop. The northern city already had a district heating system and harnessed much of that infrastructure to add cooling.

District Cooling

Figure 5. Copenhagen’s District Cooling System Reduces Carbon Emissions by Nearly 70% and Electricity Consumption by 80% Compared to Conventional Cooling. [5] (Pictured: Heat pipes running under Copenhagen/Wikimedia Commons)

At times Copenhagen’s ocean water is so cold it doesn’t need to be chilled, which saves energy. The district cooling is targeted for co-located buildings (department stores, commercial buildings, hotels, and facilities with data centers) with cooling demands of 150 kilowatts (kW) or more. [9]

And in the U.S., Thermal Chicago provides the country’s biggest district cooling system. It includes five interconnected plants providing cooling to more than 100 buildings in the Windy City. During peak time of air conditioner use, the Thermal Chicago cooling system has reduced energy demand by more than 30 megawatts.

The facility’s also uses a different water-chilling technology that includes an ice-based thermal storage tank for faster cooling and return of chilled water to the infrastructure needing cooling. A YouTube video explains how Thermal Chicago water cooling is set up. [10]

District Cooling

Figure 6. Ice-based Cooling Section Within the Thermal Chicago District Cooling System, from YouTube Video. [10]

Recapping the basic steps of district cooling:

• A central plant chills water.
• A primary water circuit then distributes the chilled water to buildings through an underground insulated pipes network.
• A secondary water circuit in the customers’ building circulates the cold water.
• Air is then forced past the cold water tubing to produce an A/C environment.
• The warmer water of the primary circuit is returned to the central plant to be re-chilled and recycled.

District cooling is not a new technology, or even a new concept. Centralized production and distribution of temperature control has been in commercial use since the 19th century, mainly for heating purposes.

Today, for efficiency and environmental reasons – including rising global temperatures – district cooling is seeing a renaissance by being designed into many of the smarter cities being built around the world.

References
1. Tabreed, https://www.tabreed.ae/en/district-cooling/district-cooling-overview.aspx
2. Lusail City, http://www.lusail.com
3. CELCIUS Smart Cities, http://celsiuscity.eu/
4. Saudi Tabreed, http://www.fleminggulf.com/files/doc/DBUT09/Abdul_Jalil_Bakhruji.pdf
5. Tabreed, https://www.tabreed.ae/en/district-cooling/our-district-cooling-plants.aspx
6. The National UAE, http://www.thenational.ae/uae/environment/tabreed-reduces-carbon-emissions
7. Siemens, http://www.middleeast.siemens.com/me/en/news_events/news/news-2016/siemens-smart-building-tech-can-cut-gccs-cooling-bill-by-40.htm
8. Gujarat International Finance Tec-City, http://giftgujarat.in/district-cooling-system
9. Forbes, https://www.forbes.com/sites/justingerdes/2012/10/24/copenhagens-seawater-cooling-delivers-energy-and-carbon-savings/#1f8d40d74245
10. Thermal Chicago video, https://www.youtube.com/watch?v=ziEbY0oLf-o

For more information about Advanced Thermal Solutions, Inc. thermal management consulting and design services, visit www.qats.com or contact ATS at 781.769.2800 or ats-hq@qats.com.

Thermal Management: They Hope The Problem Will Go Away On Its Own

“Often times the thermal management is a second thought or after thought and alot of managers hope it goes away by itself.  Then at the end of the program development they do the testing, finds that it fails and panic and need to call someone right away.”   That’s a quote from Dr. Kaveh Azar of Advanced Thermal Solutions during his live interview on the importance of thermal management.

That interview, performed by one of the electronics’ industries leading journalists, Rich Nass, can be heard on their web site here or by clicking the you tube link below.

What are Heat Pipes and What Characteristics Make Them Helpful for Electronics Cooling?

Heat Pipes, the Super Conductors
Heat pipes are transport mechanisms that can carry heat fluxes ranging from 10 W/cm2 to 20 KW/cm2 at a very fast speed. Essentially, they can be considered as heat super conductors. Heat pipes can be used either as a means to transport heat from one location to another, or as a means to isothermalize the temperature distribution.

The first heat pipe was tested at Los Alamos National Laboratory in 1963. Since then, heat pipes have been used in such diverse applications as laptop computers, spacecraft, plastic injection molders, medical devices, and lighting systems. The operation of a heat pipe is described in Figure 1.


Figure 1. Schematic View of a Heat Pipe [1].

A heat pipe has three sections: the evaporator, adiabatic, and condenser. The interior of the pipe is covered with a wick, and the pipe is partially filled with
a liquid such as water. When the evaporator section (L ) is exposed to a heat source, the liquid inside vapor- izes and the pressure in that section increases. The increased pressure causes the vapor to flow at a fast speed toward the condenser section of the heat pipe (L ). The vapor in the condenser section loses heat to the integral heat sink and is converted back to liquid by the transfer of the latent heat of vaporization to the condenser. The liquid is then pumped back to the evaporator through the wick capillary action. The middle section
of the heat pipe (La), the adiabatic portion, has a very small temperature difference.

figure2Figure 2. Pressure Drop Distribution in a Heat Pipe [1].

Figure 2 shows the pressure drop distribution inside a heat pipe. In order for the capillary force to drive the vapor, the capillary pressure of the wick should exceed the pressure difference between the vapor and the liquid at the evaporator. The graph also shows that if the heat pipe is operated against the force of gravity, the liquid undergoes a larger pressure drop. The result
is less pumping of the wick with reduced heat transfer. The amount of heat transfer decrease depends on the particular heat pipe.

figure3Figure 3. Different Wick Structures

A typical heat pipe is made of the following:
1. Metallic pipe  The metal can be aluminum, copper or stainless steel. It must be compatible with the working fluid to prevent chemical reactions, such as oxidation.

2. Working fluid  Several types of fluids have been used to date. These include methane, water, ammonia, and sodium. Choice of fluid also depends on the
operating temperature range.

3. Wick  The wick structure comes in different shapes and materials. Figure 3 shows the profiles of common wick types: axial groove, fine fiber, screen mesh, and sintering. Each wick has its own characteristics. For example, the axial groove has good conductivity, poor flow against gravity, and low thermal resistance. Conversely, a sintering wick has excellent flow in the opposite direction of gravity, but has high thermal resistance.

Table 1. Heat Pipes with Different Structures and Operating Conditions [1]table1Table 1 shows experimental data for the operating temperature and heat transfer for three different types of heat pipes [1].

Certain factors can limit the maximum heat transfer rate from a heat pipe.

These are classified as follows:
1. Capillary limit
  Heat transfer is limited by the pumping action of the wick.
2. Sonic limit  When the vapor reaches the speed of sound, further increase in the heat transfer rate can only be achieved when the evaporator temperature
increases.
3. Boiling limit  High heat fluxes can cause dry out.
4. Entrainment limit  High speed vapor can impede the return of the liquid to the condense.

A heat pipe has an effective thermal conductivity much larger than that of a very good metal conductor, such as copper. Figure 4 shows a copper-water heat pipe and a copper pipe dipped into an 80°C water bath. Both pipes were initially at 20°C temperature. The heat pipe temperature reaches the water temperature in about 25 seconds, while the copper rod reaches just 30°C after 200 seconds. However, in an actual application when a heat pipe is soldered or epoxied to the base of a heat sink, the effective thermal conductivity of the heat pipe may be drastically reduced due to the extra thermal resistances added by the bonding. A rule of thumb for the effective thermal conductivity of a heat pipe is 4000 W/mK.

figure4
Figure 4. Experiment Comparing Speed of Heat Transfer Between a Heat Pipe and a Copper Pipe [1].

Heat pipe manufacturers generally provide data sheets showing the relationship between the temperature difference and the heat input. Figure 5 shows the temperature difference between the two ends of a heat pipe as a function of power [2].

figure5Figure 5. Temperature Difference Between the Evaporator and the Condenser in a Heat Pipe [2].

figure6Figure 6. Typical Round Heat Pipes in the Market.

There are many heat pipe shapes in the market, but the most common are either round or flat. Round heat pipes can be used for transferring heat from one point to another. They can be applied in tightly spaced electronic components, such as in a laptop. Heat is transferred to a different location that provides enough space to use a proper heat sink or other cooling solution. Figure 6 shows some of the common round heat pipes available in the market.

Flat heat pipes (vapor chambers) work conceptually the same as round heat pipes. Figure 7 shows a flat pipe design, they can be used as heat spreaders. When the heat source is much smaller than the heat sink base, a flat heat pipe can be embedded in the base of the heat sink, or it can be attached to the base to spread the heat more uniformly on the base of the heat sink. Figure 8 shows some common flat heat pipes.

figure7Figure 7. Conceptual Design Schematic of a Flat Heat Pipe [1].

 

figure8Figure 8. Commonly-used Flat Heat Pipes.

Although a vapor chamber might be helpful in minimizing spreading resistance, it may not perform as well as a plate made from a very high conductor, such as diamond. A determining factor is the thickness of the base plate. Figure 9 shows the spreading resistance for 80 x 80 x 5 mm base plate of different materials with a 10 x 10 mm heat source. The vapor chamber has a spreading resistance that is better than copper, but worse than diamond. However the price of the diamond might not justify its application. Figure 9 also includes the spreading
resistance from the ATS Forced Thermal Spreader (FTS), which is equal to that of diamond at a much lower cost. The FTS uses a combination of mini and
micro channels to minimize the spreading resistance by circulating the liquid inside the spreader.

figure9Figure 9. Thermal Spreading Resistances for Different Materials. [3] – ATS

Heat pipes have a very important role in the thermal management arena. With projected lifespans of 129,000-260,000 hours (as claimed by their manufacturers), they will continue to be an integral part of some new thermal systems. However, with such problems as dry out, acceleration, leakage, vapor lock and reliable performance in ETSI or NEBS types of environments, heat pipes should be tested prior to use and after unsatisfactory examination of other cooling methods.

References:
1. Faghri, A. Heat Pipe Science and Technology Taylor & Francis, 1995.
2. Thermacore Internation, Inc., www.thermacore.com.
3. Xiong, D., Azar, K., Tavossoli, B., Experimental Study on a Hybrid Liquid/Air Cooling System, IEEE, Semiconductor Thermal Measurement and Management Symposium 2006.

round or flat heat pipes for electronics coolingHow to subscribe to qpedia

June 10, 2011 Thermal Management Industry Summary

ATS’ wrap-up of news in the Thermal Management and Electronics Cooling industry for the week ending June 10, 2011

  1. Bergquist has a new phase change material: Suited for use between high-power electrical device requiring electrical isolation and its heat sink, Hi-Flow® 650P thermally conductive phase change material offers thermal impedance of 0.20ºC-in.²/W at 25 psi. Top side is dry to touch, bottom side has natural tack, and polyimide film reinforcement provides dielectric strength as well as cut-through resistance. Appropriate uses include power supplies, IGBTs, discrete components, and automotive applications.
  2. Ta-I Ramps Production on HS Substrate: Chip resistor maker Ta-I Technology plans to ramp up its monthly production capacity of LED heat sink substrates to 200,000 units by the end of June 2011, according to company chairman Paul Chiang.
  3. Ellsworth Adhesive: Ellsworth Adhesives has now become a distributor of Sauereisens adhesives and potting solutions. Sauereisen, one of the leading manufacturers of adhesives and sealant solutions, has been added to the Ellsworth Adhesives business portfolio as a new supplier.
  4. PNY: PNY unveils new NVIDIA GTX 580 liquid cooled graphics card with CPU cooling
  5. Jaro Thermal New Heat Sink: Honeycomb heatsink cools BGAs in thin-profile devices