Category Archives: heat sink design

Casting a Light on LED Cooling with Die Cast Heat Sinks

Advanced Thermal Solutions work in casting aluminum heat sinks allows us create large, rugged, and reliable heat sinks and enclosures in a single piece.  Such work carries a number of advantages including enclosures and heat sink in a single unit, reduced part count, reduced final manufacturing complexity.  ATS’s John O’Day sat down with ATS engineers Joe Gaylord and Anatoly Pikovsky regarding our engineering in cast heat sink design to discuss two specific customers projects, both in LED Lighting.   The first company is a  company focusing on LED stadium lighting and the other specializes in LED industrial lighting.

John: What kind of value add did ATS add to the stadium lighting company for their cast stadium heat sink?

Anatoly: Well, this company tried to make the casting for their Stadium LED light for almost a year. They went to many different vendors and nobody could actually build what was needed. They started to cast the first prototypes but they developed cracks. ATS was brought in to see if we could solve the technical and manufacturing problem. Our involvement made it possible for them to ship their stadium lighting on time to be installed in the University of Phoenix Stadium.

Ephesus Stadium Light

Joe: One thing we did was to change the fins a little bit to improve heat transfer and manufacturability, changed how the actual casting tool was made.

Anatoly: We also created a version of the heat sink from sheet metal as a backup, in case the casting failed.

Joe: We did CFD modeling to determine fin efficiency too. In the current design fin efficiency is very good but we thought we could improve it further, so we found that a much shorter fin version would perform just as well but this stadium LED lighting company was already down the design cycle and needed to get this product out the door. We also did work developing a version with heat pipes too, to give the customer multiple data points on what was possible.

John: So we created multiple options for the customer as backup so they could make this shipment for University of Phoenix Stadium on time. It sounds like we take partnering with our customer’s very seriously.

University of Phoenix Stadium

Joe: That’s true we do take partnering seriously and in this case there was a great deal of investment on ATS’s part.

John: So we’ve done casting for another important lighting customer too haven’t we?

Joe: That’s right, an LED company that makes several types of LED lights, some for food chillers like you might see in department stores and they also make canopy lights for gas stations. The canopy lighting LED’s were what we worked on.

Anatoly: If you ever look up while pumping gas you’ll likely see their LED lights in the overhangs above the gasoline pumps.

Joe: So the model they had previously was a molded plastic shroud with a PCB board, LED array, and extruded heat sink on the inside of the shroud of the cooling device. Essentially a big extruded aluminum heat sink, all bolted together (credit senior). Their goal was to increase the number of LED’s, power and lumens in these lights. Thermally, their target originally was 100 Watts, then it climbed to 150 Watts, then it came down to about 120 Watts.

John: So what did we do to make their design better and casting better?

Joe: Our goal was to get rid of the plastic shroud and the extruded aluminum and replace those with a cast piece. We suggested casting for this design since it would create a shroud that allowed for heat transfer. It eliminated a two piece design of heat sink with shroud allowing this LED customer to simplify manufacturing while meeting their thermal performance requirements.

John: Was it easy to come up with this design or did it take several iterations to get to the final design?

Joe: Well, as you know, ATS has a 3-Core Design Process where we do a quick analytical model of the design, move to computational modeling using Flotherm or CFdesign, and finish with an empirical model for physical testing in our thermal characterization lab. This process helps us to reduce the actual time it takes to do a proper heat transfer solution design. For this work we did a lot of thermal modeling with CFdesign.

Heat Sink Design Engineering Process, ATS

Anatoly: There were some key challenges in this design: First it required natural convection cooling. Second, we had to design to cool 120 Watts. Third, the outside ambient temperature can be up to 40 degrees C when a gas station is in the desert.

Joe: For natural convection cooling you need some headroom for the air to convect. We had designed this thermal management solution for a minimum headroom of 1-inch from the heat sink to the canopy over a gasoline pump. Allowing air to come into the heat sink and circulate out was a major challenge requiring excellent fin efficiency, a consideration for spreading resistance, and the mechanical packaging over the LED array. The weight of this casting had to be taken into account too since it would be outside in a canopy over gas pumps with people standing under it. Finally, the industrial design was an important aspect as well since it was outside and had to look attractive. We took time to carefully sculpt the heat sink fins in the final design to account for both aesthetics and thermal performance. Our final design was a machined, open enclosure with fins on all four sides, so that air flow can come up and through from all sides.

International Lighting Canopy Light

John: When we completed testing in our thermal lab with the model we had machined, did we move to casting then?

Joe: Yes we did. Our design was set to cast in two pieces so that the cost to manufacture was within the LED customer’s requirements. The end result was a powder coated single unit, with the electronics box built into the cast, that fit both the PCB and LED. All that was needed as a cover. It simplified the manufacturing process, reduced the manufacturing cost and met their requirements for overall price and thermal performance.

To learn more about ATS’s die cast heat sinks and design services, please email us ats-hq@qats.com or call us at 781-769-2800.

How to subscribe to qpedia

High Fin Density Heat Sink Manufacturing, Is Zipper Fin Best?

High fin density heat sinks can be fabricated via skiving, bonded fin, folded fin and zipper fin technologies. This video talks about the different types and about how Zipper Fin is a cost effective choice at high volume.  The video interview is followed by a transcript of the interview.

**Hey Joe how’s it going? **

Great John, how are you?

**Good, thanks for stopping by marketing. **

Always a pleasure for engineering and marketing to come together.

**It really is and we love being in marketing because you can see some of the new products that are happening along with some of the new technology ATS is bringing forth and the way that we are dealing with our customers. I see you brought by some new technology here for us? **

Yes, new but not so new. Zipper fins is what we have here and we’ve been doing this for some time. They’ve been popular for years and years. They find a specific place in the market depending on their need and we have deployed them with great success.

**So, what exactly is a zipper fin? Can you explain the manufacturing process, the special technology or? **

Zipper fin is a multi-step assembly process, the zipper itself being made out of a sheet metal that is formed into a specific shape. That material is usually aluminum or copper and it has certain features on the fin itself (credit shakita). When placed together each fin is interlocking to its neighbor. When it’s all assembled it’s soldered to the base of the heat sink it’s a rigid body. It’s very reliable as far as fin density, shape, and its size.

**Now, why would a customer want us to build a zipper fin system? Is it cost or manufacturing quality or better heat transfer? **

Zipper fins compared to other designs that you have heard of called bonded fin. It’s similar to what we have but the tooling is a lot higher. One of the benefits with a zipper fin is you can actually manufacture a very high aspect ratio fin profile without high tooling cost. So, if you want really tall fins, really thin fins, and really tightly packed fins zipper fin may be the solution.

**That’s for more surface area right? **

Surface area exactly and also this type of zipper fin creates a duct. So when the zipper is covering the entire fin field, it creates a duct in the airflow which is much better for thermal performance.

**These are hollow in here and the reason for that is because its duct airflow, so it actually creates both a heat sinks and a duct in one piece. **

We use a lot this as well for active heat sinks with air movers, fans, or blowers. This heat sink here is in a system but its duct flow a zipper pack and also some customers even put an interface material on top of a zipper pack like this and conduct heat to the lid of a chassis.

**Do customers find it useful using this kind of device instead of other types of heat sinks in specific areas like military, or for example appliances? And is it really cost or volume driven? **

It’s mainly volume driven. Here at ATS we have a lot of zipper fins tooled up and ready to deploy on a heat sink base. So depending on the complexity on the base itself and the need for the surface area, and fin density based on the airflow these things have to align to be able to utilize a zipper fin. There are some things we cannot do via extruding, or skiving, or forging that we can do with a zipper fin.

For instance, either with copper or aluminum we can have a zipper fin that’s 0.2 millimeters thick. We cannot do that with a skiving process or an extruding process.

**You mentioned skiving, now would a customer choose this over skiving or would they make a decision based on premise not because they like one or the other? **

It really depends on what they need of the solution itself. Low volume skiving is comparable to zipper fin profile and most customers choose to skive first , but in high volume there is a breaking point where it makes sense to go to a zipper fin. With skiving we can skive aluminum and copper. A copper heat sink skived is very heavy, one of the benefits of zipper fin heat sink is we can have a have a copper base that gives us that heat spreading we can add an aluminum fin profile which reduces the weight significantly.

**There are other technologies that people use with thermal management such as ATS’s patented maxiGrip and superGRIP technologies that allow a perfect connection with the chip and allow the use of face changed material. Could those also be applied to a zipper fin? **

Yes, so as you see on the zipper fin heat sinks the fin neighbors each other all the way through. We can easily have maxiGrip or a superGRIP over the middle portion. We don’t always have to have the fin field throughout the entire width of the heat sink. We can split the fin back up if we need to allow specific features on the heat sink or clip on methods such as maxiGRIP, superGRIP, or z-clips. Push pins works as well, this is hard mounted onto the board. This heat sink is cooling about 12 total components on the bottom of this heat sink, this one utilizes the cooper for spreading and again it’s that weight factor we want to reduce so we use aluminum fins to which need to be nickel-plated when you solder.

**Now how about these two, I know these are from different applications than this one but they seem to all use zipper fin? **

The good thing about a zipper as well is if you were to stamp a fin for the zipper you can also during that stamping process allow for holes in the fins to allow crescent heat pipes. So here we have one tool for the fin itself to allow for the heat pipes and you can see this is the base of the heat sink that touches the component which is the evaporator section and the condenser section is actually the zippers away from the component then mounted to the board. But again, the zipper fin profile allows us to reduce weight significantly especially with the heat pipe application and it is one time tooling low cost production.

**What about this particular one? **

This is an all copper solution which is a stamped base, flat basic material, and a standard zipper fin copper profile that’s soldered on. So again it’s a multi-step process where you make a long zipper to break it off to your specific width, place it on the heat sink and wave solder. So again, when performance is critical these are performing some of the best numbers for heat sinks for that given envelope. Again, we can significantly increase the aspect ratio, reduce the fin thickness, and also fin density.

**And we’ve done a lot of these so it’s really a part of our design services and the we really help our customers get to the exact solution they need and not just some off the shelf solution but we give them the best cost and the best effective heat transfer.**

Exactly. We have many extrusion profiles in stock we also have many zipper fins in stock as well that we can pick and choose from depending on length, height, and orientation on a base to utilize for a solution. They need not all be square, we have some unique fins that are tooled up and we can also use the zipper fin to allow for a fin profile to be a circular (360 degrees) and we use that with a lot of active heat sinks and fans. So an axial type of zipper fins.

As you mentioned some of the industries; LEDs, embedded, military, and telecom and data-com.

**Consumer and appliances I would imagine maybe concerning the volume and the price? **

Exactly, once you do tool up if it’s something new then production will be a very low cost solution.

**If people want to know more about zipper fins they can contact us at www.qats.com.**

Absolutely! We’re here designing a lot of these and others if these are the right solution, we have the options.

To learn more, email us at ats-hq@qats.com.

Increased Performance from High Aspect Ratio Heat Sinks

High Aspect Ratio Heat Sinks from ATSA heat sink’s aspect ratio is basically the comparison of its fin height to the distance between its fins. In typical heat sinks the aspect ratio is between 3:1 and 5:1. A high aspect ratio heat sink has taller fins with a smaller distance between them for a ratio that can be 8:1 to 16:1 or greater.

Thus, a high aspect ratio heat sink provides greater density of fins in a given footprint than a more common sink, and/or stands taller than its conventional counterpart. The great benefit from a high aspect ratio heat sink is the increased amount of heat dissipating surfaces it provides due to its additional fins. Further, these heat sinks do not occupy any more length or width. The result is a more efficient heat sink with higher performance per gram in the same footprint.

Many common heat sinks are unable to serve the needs of high volume applications, due to the fact that their cooling capacity – measured in part by the aspect ratio – is simply not great enough. By nearly doubling a heat sink’s aspect ratio the cooling performance is optimized and heat issues resolved without the need for more complex solutions.

Because high aspect ratio heat sinks are manufactured in similar fashion as conventional heat sinks, their cost is not significantly higher. They can be extruded or bonded. Fins can be straight or folded. For omnidirectional purposes a high density of pins can be used as heat spreaders in place of fins.

High aspect ratio heat sinks are often ideal thermal solutions for workstation CPUs, high performance power supplies and converters, and high-end amplifiers.

Of critical importance when using high aspect ratio heat sinks is providing sufficient airflow to carry away the radiating heat. Passive cooling, e.g. conduction and radiation may be inadequate. Convective heat transfer removes essentially all of the energy from a heat sink under forced air cooling. Particularly with dense fin fields, an improperly directed fan may create stagnation points and high pressure loss. Thermal modeling is recommended when determining the needed active cooling resources.

An Expert Speaks Out on CFD Modeling of Heat Sinks

Chris Aldham of Future Facilities has something to say about CFD modeling of heat sinks. And he should know after 30 years in the business. Chris will present a webinar for ATS on May 24, 2012 “CFD as a Tool to Perform Heat Sink and System Modeling,” that you can attend for free by registering on Qats.com.

https://www2.gotomeeting.com/register/467986842

We asked Chris to share upfront some general knowledge and opinions on the topic ….

What are some of the recent advances in CFD technology and how might they improve heat sink modeling?

The main advance I’ve seen is the increase in computer power and lowering of computer cost that has occurred over the past few years. It is now possible to solve larger (more grid cells) and more detailed (more objects and better geometrical representation) models and more of them very efficiently. So now representing the detailed geometry heat sinks in a CFD model is easy. Importing MCAD heat sink geometry and using that geometry directly in the software ensures an accurate representation of the heat sink.

The other advance is the automation possible in specialized tools such as 6SigmaET. The mesh necessary to represent the heat sink is determined automatically within the software it doesn’t rely on the user creating a good mesh.

These two trends seem set to continue so it will be possible to model increasingly complicated heat sink designs.

Meshing is very core to CFD modeling. What are the do’s and dont’s when it comes to meshing heat sink models?

I think there are two aspects to consider when meshing a heat sink. The solid geometry must be accurately captured to ensure the heat spreading and conduction through the base and up the fins is accurately represented. Then the airflow between the fins must be accurately captured. This invariably requires a fine mesh at least 3 cells between the fins and maybe more depending on the gap size.

What are some of the benefits from developing a high quality CFD model of a heat sink?

At first sight heat sinks seem quite simple in function but their interaction with the components they are cooling and the air flow around them is quite complex. The heat spreading of the heat sink base can subtly change the thermal resistance of the component. The increase in surface area the heat sink provides improves heat transfer but also represents an increased resistance (increased pressure drop) to the airflow. So a good heat sink design must balance heat spreading, heat transfer and pressure drop. As a detailed CFD model can represent all these aspects accurately in the situation in which it will be used it can be the only way to optimize them before the heat sink is manufactured and tested.

Can you cite any examples where your CFD tools led to improved heat sinks solutions?

We have published a couple of examples together with ATS Europe who have used 6SigmaET in a number of projects. One was an unusual heat sink design on an LED replacement for a traditional light bulb where a 14% improvement in lamp performance was produced (as well as a much nicer looking design in my opinion) by changing the heat sink design. This work also showed good agreement between 6SigmaET simulations and measurements performed on the real devices. See images below.

How long does it take a typical engineer to master CFD modeling? Are there any innovations in training?

I’ve been doing CFD for over 30years and I’m not sure I’ve mastered it yet. Fortunately engineers do not have master CFD modeling today as some CFD software products are focused on specific applications and these can really present CFD in a very usable form. Of course it helps if the engineers have some idea of the physics of fluid flow and heat transfer but much of the numerical work in CFD can be preset, automated and hidden away. This has been especially true in the field of electronics cooling where specialized software has been around for decades. These tools can be learned in a few days and users can be proficient in a few weeks.

How is Future Facilities different from its competitors?

Future Facilities is highly focused on a small number of related application areas. We produce software for design, operation and management of data centers which includes CFD modeling of the airflow and temperatures as well as other non-CFD analysis modules. We also use the software in our engineering consultancy group providing services that ensure the software development is focused on exactly what is needed and making it easy and efficient.

6SigmaET is a recent product focused on electronics cooling and integrated into our data center suite. Like the whole software suite it presents the user with a set of specialized intelligent objects which represent the real things encountered in electronics (pcbs, fans, heat sinks, power supply, components, etc.). As every object knows what it is, it knows how to behave and this can make creating a model very intuitive for the users. It also allows us to automate the meshing rules for each object so we can ensure a heat sink, for example, is meshed correctly.

I believe the many years of experience we have in using and developing CFD products alongside a strong focus on particular application areas and a desire to make complex technology available to engineers (expert and beginner, full-time or occasional users) makes us very different from other CFD companies.

Dr. Chris Aldham has worked in computational fluid dynamics (CFD) for over 30 years (starting with PHOENICS at CHAM with Prof. Brian Spalding) and for more than 20 years in the field of electronics cooling. After 16 years at Flomerics, Chris joined Future Facilities as a Product Manager responsible for 6SigmaET electronics cooling simulation software which is part of a suite of integrated software products that tackle head-on the challenges of data center lifecycle engineering (including equipment design analysis) through the Virtual Facility

ATS Releases Mobile Heat Sink Design Tool for Android

We’ve just released our FIRST mobile application for Android! Our Heat Sink Design Tool is ready for you to download now from the Android Application store. The application will enable users to design a heat sink on their Android equipped mobile device for cooling of their electronic devices. After the design, the user can select to search available databases to see such a product exists. The app is 1.0M in size and requires Android 1.6 or higher. Get yours now for free by clicking to Heat Sink Design Tool on Android

Use cases include:

  • Consultants: Are you on premise with your client? Once you understand your needs for a heat sink, use our heat sink design tool to get a product fast.
  • Field Engineers: If your in the field, taking notes on what heat sink to use might be impractical. Use our heat sink design application to punch in the parameters for a heat sink and get it done right there.
  • Students: If your in the lab working on your next project, why not use our convenient application on your Android device to get our project that much quicker to completion

You say you use an iPhone? Well, we have an App for that too! Apple iPhone Heat Sink Design App