Tag Archives: thermal resistance

New Qpedia Thermal eMagazine Published!

Qpedia Thermal eMagazine, Volume 6, Issue 11, has just been released and can be downloaded at: http://www.qats.com/Qpedia-Thermal-eMagazine/Back-Issues. Featured articles in this month’s issue include:

Honeycomb Heat Sinks for LEDs

LEDs, or light-emitting diodes, are a form of solid-state lighting. An LED light is often made of a small piece of semiconductor, an integrated optical lens used to shape its radiation pattern, and a heat sink, used to dissipate heat and maintain the semiconductor at low operating temperature. LED lights present many advantages over incandescent light sources, including lower energy consumption, longer lifetime, improved physical robustness, smaller size and faster switching. This article examines Ma et al’s  findings with respect to the honeycomb heat sink design employed in LEDs, which has proven to be highly efficient.

Characteristics of Thermosyphons in Thermal Management

With the increase of heat fluxes and shrinking chip sizes in electronics applications, there is a need to spread the heat from the small chip to the larger heat sink or to transport the heat to a location where there is ample space to remove the heat. Heat pipes, vapor chambers and thermosyphons have been introduced to undertake this task and, in this article, we focus on some aspects of the design of thermosyphons. The advantage of thermosyphons is that they have no capillary limit and can transport large amounts of heat over long distances.

Industry Developments: Heat Pipes Providing High Performance

Heat pipes are increasing in type and use for the benefits they provide. Because of their lower total thermal resistance, heat pipes transfer heat more efficiently and evenly than solid aluminum or copper. Heat pipes contain a small quantity of working fluid (e.g. water, acetone, nitrogen, methanol, ammonia). Learn the conclusions of a recent study that focused on the best working fluid and another study of heat pipes in outer space.

Technology Review: Cold Plates, 2010 to 2012

Qpedia continues its review of technologies developed for electronics cooling applications. We are presenting selected patents that were awarded to developers around the world to address cooling challenges. After reading the series, you will be more aware of both the historic developments and the latest breakthroughs in both product design and applications.

Cooling News featuring the latest product releases and buzz from around the electronics cooling industry.

Download the issue now.

Not a Qpedia subscriber? Subscribe Now for free at: http://www.qats.com/Qpedia-Thermal-eMagazine/Subscribe-to-Qpedia and see why over 18,000 engineers read Qpedia.

The New iFLOW-200 Tests and Measures the Thermal and Hydraulic Performance of Cold Plates

Advanced Thermal Solutions, Inc. (ATS) has released a new thermal test instrument, the iFLOW-200, which assesses the thermal and hydraulic characteristics of cold plates in electronics cooling. It can be used to simulate a wide range of conditions to optimize a cold plate’s performance before it is commercialized or prior to its use in an actual application.


The iFLOW-200 measures coolant temperatures from 0-70°C with the high accuracy of ± 1°C. Differential pressure of the coolant in the cold plate is measured up to 103,000 Pa (15 psi), with the precise accuracy of ± 1%. Distilled water is used as the reference coolant. For test comparisons, the systems coolingVIEW software can also calculate thermal resistance and pressure drop as a function of flow rate for selected liquids.


The instrument system includes a pair of K-type thermocouples for measuring temperature changes on the cold plate surface. Temperatures are monitored on the coolingVIEW interface.


The iFLOW-200 system features easy set up and operation to save time when evaluating different cold plate models. Designed for accuracy and convenience, the iFLOW-200 simply requires setting the starting and ending coolant flow rates, and choosing the dwell time, pumping power and other parameters. These are easily done on any PC using the systemd user-friendly application program.

The iFLOW-200 system features separate controller and hydraulics enclosures with USB connections. The hydraulic package includes a fluid level indicator, coolant inlets and outlets from/to the cold plate under test, ports for surface temperature thermocouples, and a fluid cooling system for its internal heat exchanger. The iFLOW-200 is also ideal for testing alternative liquids.


More information about the iFLOW-200 Cold Plate Characterization System can be found at http://www.qats.com/Products/Temperature-and-Velocity-Measurement/Instruments/iFLOW-200

Thermal Resistance and Component Temperature

To maintain operation, the heat must flow out of a semiconductor as such a rate as to ensure acceptable junction temperatures. This heat flow encounters resistance as it moves from the junction throughout the device package, much like electrons face resistance when flowing through a wire. In thermodynamic terms, this resistance is known as conduction resistance and consists of several parts. From the junction, heat can flow toward the case of the component, where a heat sink may be located. This is referred to as ÎJC, or junction to case thermal resistance. Heat can also flow away from the top surface of the component and into the board. This is known as junction to board resistance, or ΘJB.

Source: JESD51-2, Integrated Circuits Thermal Test Method – Natural Convection, JEDEC, March 1999.

ΘJB is defined as the temperature difference between the junction and the board divided by the power when the heat path is from junction to board only. To measure ΘJB, the top of the device is insulated and a cold plate is attached to the board edge (Figure 1). This is the true thermal resistance, which is the characteristic of the device. The only problem is that, in a real application one does not know how much power is being transmitted from different paths.

Due to the multiple heat transfer paths within a component, a single resistance cannot be used to accurately calculate the junction temperature. The thermal resistance from junction to ambient must be broken down further into a network of resistances to improve the accuracy of junction temperature prediction. A simplified resistor network is shown in Figure 2.

As board layouts become denser, there is a need to design optimized thermal solutions that use the least amount of space possible. Simply put, there is no margin to allow for over-designed heat sinks with tight component spacing. Accounting for the effect of board coupling is an important part of this optimization. The possibility for using an oversized heat sink exists only if the junction to case heat transfer path is considered.

To ensure a 105°C junction temperature at 55°C ambient a typical component (see Table 1) needs a heat sink resistance of 2.05°C/W (if we ignore board conduction). When board conduction is taken into account, the actual junction temperature could be as low as 74°C, assuming the board temperature is the same as the air temperature. This indicates a heat sink that is larger than necessary.

From this example, it is clear that all heat transfer paths from the component junction must be considered. Using just the ΘJC and ΘCA values can lead to a larger than optimal heat sink and may not accurately predict operating junction temperatures. Using the proposed correlation can also predict junction temperature when the board temperature is known from experimentation, as shown in Figure 3.



How to Control Spreading Thermal Resistance

One of the basic concepts of electronics cooling is effective transfer of heat from semiconductor devices to the ambient using heat sinks or other cooling technologies. The effectiveness of this approach depends on a systems total thermal resistance, which is composed of discrete thermal resistances on the path of heat from the source to the ambient. One of these resistances is spreading resistance.

Spreading resistance occurs whenever a small heat source comes in contact with the base of a larger heat sink. The heat does not distribute uniformly through the heat sink base, and consequently does not transfer efficiently to the fins for convective cooling. Figure 1 shows a CFdesign® simulation solution for such an occurrence. The spreading resistance phenomenon is shown by how the heat travels through the center of a heat sink base causing a large temperature gradient between the center and edges of the heat sink.

graph showing temperature distribution at the base of a heat sinkFigure 1: CFdesign solution showing temperature distribution
at the base of a heat sink

Spreading resistance is an increasingly important issue in thermal management as microelectronic packages become more powerful and compact and larger heat sinks are required to cool these devices. In high heat flux applications, spreading resistance can comprise 60 to 70% of the total thermal resistance.

A good estimate of spreading resistance is required to manage heat effectively using conventional air-cooled heat sinks. There have been a number of theoretical and experimental studies to estimate spreading resistance. Two of the most notable methods belong to Yovanovich et al. [1] and to Gordon N. Ellison [2].

While these extensive studies cover all aspects of spreading resistance, they involve cumbersome infinite series and complicated coefficient terms.  (click the link to read the rest of our article here on our electronics cooling blog)

Continue reading

Understanding Thermal Conductivity

Advanced Thermal Solutions Webinar on using heat pipes and vapor chambers for thermal management, 10-22-20 2PM
Please join us for our webinar, October 22, 2020, 2PM EST
Thermal Conductivity Article Begins Below.

Thermal Conductivity: A measure of the ability of a material to transfer heat. Given two surfaces on either side of a material with a temperature difference between them, the thermal conductivity is the heat energy transferred per unit time and per unit surface area, divided by the temperature difference [1].

Thermal conductivity is a bulk property that describes the ability of a material to transfer heat. In the following equation, thermal conductivity is the proportionality factor k. The distance of heat transfer is defined as †x, which is perpendicular to area A. The rate of heat transferred through the material is Q, from temperature T1 to temperature T2, when T1>T2 [2].



Thermal Conductivity Equation
Figure 1. Conduction heat transfer process from hot (T1) to cold (T2) surfaces

Thermal conductivity of materials plays a significant role in the cooling of electronics equipment. From the die where the heat is generated to the cabinet where the electronics are housed, conduction heat transfer and, subsequently, thermal conductivity are the integral components of the overall thermal management process.



The path of heat from the die to the outside environment is a complicated process that must be understood when designing a thermal solution. In the past, many devices were able to operate without requiring an external cooling device like a heat sink. In these devices, the conduction resistance from the die to the board needed to be optimized, as the primary heat transfer path was into the PCB. As power levels increased, heat transfer solely into the board became inadequate (credit shakita). Much of the heat is now dissipated directly into the environment through the top surface of the component. In these new higher-powered devices, low junction-to-case resistance is important, as is the design of the attached heat sink.

Continue reading